
Returning to Dynamic Programming

1

What is an Algorithm?

An algorithm is a sequence of instructions that one must perform in order to solve a well-formulated problem.

2

Correctness

An algorithm is correct only if it produces correct result for all input instances.

If the algorithm gives an incorrect answer for one or more input instances, it is an incorrect algorithm.

Coin change problem

Input: an amount of money M in cents

Output: the smallest number of coins

US coin change problem

3


First


Previous


Notebook


Next

US Coin Change

4

Change Problem

Input:

an amount of money M

an array of denominations c = (c , c , …,c)

in order of decreasing value

Output: the smallest number of coins

5

1 2 d

Another Approach?

Let's bring back brute force

Test every coin combination and see if it adds up to our target

Is there exhaustive search algorithm?

[2, 0, 0, 2, 0]

def exhaustiveChange(amount, denominations):
 bestN = 100
 count = [0 for i in xrange(len(denominations))]
 while True:
 for i, coinValue in enumerate(denominations):
 count[i] += 1
 if (count[i]*coinValue < 100):
 break
 count[i] = 0
 n = sum(count)
 if n == 0:
 break
 value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])
 if (value == amount):
 if (n < bestN):
 solution = [count[i] for i in xrange(len(denominations))]
 bestN = n
 return solution

print exhaustiveChange(42, [1,5,10,20,25])

6

Other Tricks?

A branch and bound algorithm

[2, 0, 0, 2, 0]

def branchAndBoundChange(amount, denominations):
 bestN = amount
 count = [0 for i in xrange(len(denominations))]
 while True:
 for i, coinValue in enumerate(denominations):
 count[i] += 1
 if (count[i]*coinValue < amount):
 break
 count[i] = 0
 n = sum(count)
 if n == 0:
 break
 if (n > bestN):
 continue
 value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])
 if (value == amount):
 if (n < bestN):
 solution = [count[i] for i in xrange(len(denominations))]
 bestN = n
 return solution

print branchAndBoundChange(42, [1,5,10,20,25])

Correct, and works well for most cases, but might be as slow as an exhaustive search for some inputs.

7

Is there another Approach?

Tabulating Answers

If it is costly to compute the answer for a given input, then there may be advantages to caching the

result of previous calculations in a table

This trades-off time-complexity for space

How could we fill in the table in the first place?

Run our best correct algorithm

Can the table itself be used to speed up the process?

8

Solutions using a Table

Suppose you are asked to fill-in the unknown table entry for 67¢

It must differ from previous known optimal result by at most one coin…

So what are the possibilities?

BestChange(67¢) = 25¢ + BestChange(42¢), or

BestChange(67¢) = 20¢ + BestChange(47¢), or

BestChange(67¢) = 10¢ + BestChange(57¢), or

BestChange(67¢) = 5¢ + BestChange(62¢), or

BestChange(67¢) = 1¢ + BestChange(66¢)

9

A Recursive Coin-Change Algorithm

[2, 0, 0, 2, 0]

def RecursiveChange(M, c):
 if (M == 0):
 return [0 for i in xrange(len(c))]
 smallestNumberOfCoins = M+1
 for i in xrange(len(c)):
 if (M >= c[i]):
 thisChange = RecursiveChange(M - c[i], c)
 thisChange[i] += 1
 if (sum(thisChange) < smallestNumberOfCoins):
 bestChange = thisChange
 smallestNumberOfCoins = sum(thisChange)
 return bestChange

print RecursiveChange(42, [1,5,10,20,25])

The only problem is... it is too slow

Let’s see why...

10

Recursion Recalculations

Recursion often results in many redundant calls

Even after only two levels of recursion 6 different change values are

repeated multiple times

How can we avoid this repetition?

Cache precomputed results in a table!

11

Back to Table Evaluation

When do we fill in the values of the table?

We could do it lazily as needed… as each call to BestChange() progresses from M down to 1

Or we could do it from the bottom-up – tabulating all values from 1 up to M

Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt the solve the

superficially harder problem of solving for the optimal change for all values from 1 to M

12

Change via Dynamic Programming

[2, 0, 0, 2, 0]

def DPChange(M, c):
 change = [[0 for i in xrange(len(c))]]
 for m in xrange(1,M+1):
 bestNumCoins = m+1
 for i in xrange(len(c)):
 if (m >= c[i]):
 thisChange = [x for x in change[m - c[i]]]
 thisChange[i] += 1
 if (sum(thisChange) < bestNumCoins):
 change[m:m] = [thisChange]
 bestNumCoins = sum(thisChange)
 return change[M]

print DPChange(42, [1,5,10,20,25])

Recall, BruteForceChange() was O(M)

DPChange() is O(Md)

13

d

Dynamic Programming

Dynamic Programming is a general technique for computing recurrence relations efficiently by storing partial or

intermediate results

Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation

2. Consider all instances of the recurrence at each step

3. Order evaluations so you will always have precomputed the needed partial results

We'll see it again, and again

14

Next Time

Back to sequence alignment

Another algorithm design approach.. Divide and Conquer

15

