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What is an Algorithm?

« An algorithm is a sequence of instructions that one must perform in order to solve a well-formulated problem.
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Correctness

« An algorithm is correct only if it produces correct result for all input instances.

= If the algorithm gives an incorrect answer for one or more input instances, it is an incorrect algorithm.
 Coin change problem

» Input: an amount of money M in cents

= Output: the smallest number of coins

 US coin change problem
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US Coin Change
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Change Problem

e Input:
= an amount of money M
= an array of denominations ¢ = (c;, Cs, ...,Cq)
in order of decreasing value

 Output: the smallest number of coins
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Another Approach?

« Let's bring back brute force
= Test every coin combination and see if it adds up to our target
= Is there exhaustive search algorithm?

def exhaustiveChange(amount, denominations):
bestN = 100
count = [0 for i in xrange(len(denominations))]
while True:
for i, coinValue in enumerate(denominations):
count[i] += 1
if (count[i]*coinValue < 100):
break
count[i] = ©
n = sum(count)

if n == 0:

break
value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])
if (value == amount):

if (n < bestN):
solution = [count[i] for i in xrange(len(denominations))]

bestN = n
return solution

print exhaustiveChange(42, [1,5,10,20,25])

[2, 0, 6, 2, 0]



Other Tricks?

« A branch and bound algorithm

def branchAndBoundChange(amount, denominations):
bestN = amount
count = [0 for 1 in xrange(len(denominations))]
while True:
for i, coinvValue in enumerate(denominations):
count[i] += 1
if (count[i]*coinValue < amount):
break
count[i] = 0
n = sum(count)
if n == 0:
break
if (n > bestN):
continue
value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])
if (value == amount):
if (n < bestN):
solution = [count[i] for i in xrange(len(denominations))]
bestN = n
return solution

print branchAndBoundChange(42, [1,5,10,20,25])

[2, 9, 0, 2, 0]

 Correct, and works well for most cases, but might be as slow as an exhaustive search for some inputs.



Is there another Approach?

» Tabulating Answers
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» Ifit is costly to compute the answer for a given input, then there may be advantages to caching the &
result of previous calculations in a table =
» This trades-off time-complexity for space =
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= How could we fill in the table in the first place?
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= Run our best correct algorithm
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» Can the table itself be used to speed up the process?
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Solutions using a Table

» Suppose you are asked to fill-in the unknown table entry for 67¢
« It must differ from previous known optimal result by at most one coin... Looks like a

» So what are the possibilities? recursive
A definition
= BestChange(67¢) = 25¢ + BestChange(42¢), or . / s
» BestChange(67¢) = 20¢ + BestChange(47¢), or _‘ That 9‘“’35
» BestChange(67¢) = 10¢ + BestChange(57¢), or me an idea!
= BestChange(67¢) = 5¢ + BestChange(62¢), or
= BestChange(67¢) = 1¢ + BestChange(66¢)




A Recursive Coin-Change Algorithm

def RecursiveChange(M, c):
if (M == 0):
return [0 for i in xrange(len(c))]
smallestNumberOfCoins = M+1
for i in xrange(len(c)):
if (M >= c[i]):
thisChange = RecursiveChange(M - c[i], c)
thisChange[i] += 1
if (sum(thisChange) < smallestNumberOfCoins):
bestChange = thisChange
smallestNumberOfCoins = sum(thisChange)
return bestChange

print RecursiveChange(42, [1,5,10,20,25])

[2, 0, 6, 2, 0]

o The only problem is... it is too slow
o Let’s see why...



Recursion Recalculations

Recursion often results in many redundant calls

Even after only two levels of recursion 6 different change values are
repeated multiple times

How can we avoid this repetition?

Cache precomputed results in a table!

Change(40) = 25 + Change(15)]

25 +10 +{Change(5) |
25+ 5 +[Change(10)

20 + Change

20 + 20 + Change(0)
20 + 10 +|Change(10)
20+ 5 +|Change(15)
10 +|Change(30
10 + 25 +|Change(5)
10 + 20 +|Change(10)
10 + 10 +|Change(20
10+ 5 +ﬂ

5 + Change(35)

5+25+
5+20+
5+10+
5+ 5+

Change(15)

Change(10
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Back to Table Evaluation

When do we fill in the values of the table?

We could do it lazily as needed... as each call to BestChange() progresses from M down to 1

Or we could do it from the bottom-up — tabulating all values from 1 up to M

Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt the solve the
superficially harder problem of solving for the optimal change for all values from 1 to M
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| 1c=000001 | 202100002 | 3¢=100003 | +--| wme=p2222 |
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Change via Dynamic Pro;

gramming

def DPChange(M, c):
change = [[0 for i in xrange(len(c))]]
for m in xrange(1,M+1):
bestNumCoins = m+1
for i in xrange(len(c)):
if (m >= c[i]):
thisChange = [x for x in change[m - c[i]]]
thisChange[i] += 1
if (sum(thisChange) < bestNumCoins):
change[m:m] = [thisChange]
bestNumCoins = sum(thisChange)
return change[M]

print DPChange(42, [1,5,10,20,25])

(2, 6, 6, 2, 0]

 Recall, BruteForceChange( ) was oMY
« DPChange( ) is O(Md)
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Dynamic Programming

« Dynamic Programming is a general technique for computing recurrence relations efficiently by storing partial or

intermediate results
» Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed partial results

« We'll see it again, and again
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Next Time

« Back to sequence alignment
 Another algorithm design approach.. Divide and Conquer
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