
Sequence Alignment

Relating sequence alignment to our Manhattan Tour Problem

Go over Midterm exam

You should see grades for PS#1, PS#2, and Midterm online

PS#3 is due tonight

PS#4 will be posted before the weekend.

1

A Biological Dynamic Programming

Problem

How to measure the similarity between a pair of nucleotide or amino acid sequences

When Motif-Searching we used Hamming distance as a measure of sequence similarity

Is Hamming distance the best measure?

How can we distinguish matches that occur by chance from slightly modified patterns?

What sorts of modifications should we allow?

2

Best Sequence Matches

Depends on how you define Best

Consider the two DNA sequences v and w :

 v: TAGACAAT
 w: AGAGACAT
 11111111

The Hamming distance: dH(v, w) = 8 is large but the sequences have similarity

What if we allowed insertions and deletions?

3

Allowing Insertions and Deletions

By shifting one sequence over one position:

 v: _TAGACAAT
 w: AGAGACA_T
 110000010

The edit distance: dH(v, w) = 3.

Hamming distance neglects insertions and deletions

4

Edit Distance

Levenshtein introduced the notion of an “edit distance” between two strings

as the minimum number of elementary operations (insertions, deletions,

and substitutions) to transform one string into the other in 1965.

d(v,w) = Minimum number of elementary operations to transform v → w

Computing Hamming distance is a trivial task

Computing edit distance is less trivial

5

Edit Distance: Example

 TGCATAT → ATCCGAT in 5 steps

 TGCATAT → (DELETE last T)
 TGCATA → (DELETE last A)
 TGCAT → (INSERT A at front)
 ATGCAT → (SUBSTITUTE C for G)
 ATCCAT → (INSERT G before last A)
 ATCCGAT (Done)

What is the edit distance? 5?

6

Edit Distance: Example (2 Try)

 TGCATAT → ATCCGAT in 4 steps

 TGCATAT → (INSERT A at front)
 ATGCATAT → (DELETE 2nd T)
 ATGCAAT → (SUBSTITUTE G for 2nd A)
 ATGCGAT → (SUBSTITUTE C for 1st G)
 ATCCGAT (Done)

Is 4 the minimum edit distance? 3?

A little jargon: Since the effect of insertion in one string can be accomplished via a deletion in

the other string these two operations are correlated. Often algorithms will consider them

together as a single operation called INDEL

7

nd

Longest Common Subsequence

A special case of edit distance where no substitutions are allowed

A subsequence need not be contiguous, but the symbol order must be preserved

Ex. If v = ATTGCTA then AGCA and TTTA are subsequences of v, but TGTT and ACGA are not

All substrings of v are subsequences, but not vice versa

The edit distance, d, is related to the length of the LCS, s, by:

 ANUNCLEIKE
 UNCBEATDUKE

 anUNC_lE____iKE 10 - 6 = 4
 __UNCb_Eatdu_KE 11 - 6 = 5

8

d(u,w) = len(v) + len(w)– 2s(u,w)

LCS as a Dynamic Program

All possible possible alignments can be represented as a path from the string’s beginning

(source) to its end (destination)

Horizontal edges add gaps in v. Vertical edges add gaps in w. Diagonal edges are a match

Notice that we’ve only included valid diagonal edges appear in our graph

9

Various Alignments

Introduce coordinates for the grid

All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6
7 7
 v A T _ G T T A
T _
 w A T C G T _ A
_ C
 0 1 2 3 4 5 5 6
6 7

Path: (0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

10

Alternate Alignment

Introduce coordinates for the grid

All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6
6 7
 v A T _ G T T A
_ T
 w A T C G _ T A
C _
 0 1 2 3 4 4 5 6
7 7

Path: (0,0), (1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,6), (6,7), (7,7)

11

Even Bad Alignments

Introduce coordinates for the grid

All valid paths from the source to the destination represent

some alignment

 0 0 0 0 0 0 1 2 3 4 5 6
7 7
 v _ _ _ _ _ A T G T T A
T _
 w A T C G T A _ _ _ _ _
_ C
 0 1 2 3 4 5 6 6 6 6 6 6
6 7

Path: (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (7,6), (7,7)

12

What makes a good alignment?

Using as many diagonal segments (matches) as possible.

Why?

The end of a good alignment from (j...k) begins with a good

alignment from (i..j)

Same as Manhattan Tourist problem, where sites are only on

the diagonal streets!

Set diagonal street weights = 1, and horizontal and vertical

weights = 0

13


First


Previous


Notebook


Next

Alignment: Dynamic Program

14

Step 1

Initialize 1st row and 1st column to all zeroes.

Note intersections/vertices are rows in this matrix

15

Step 2

Evaluate recursion for next row and/or next column

16

Step 3

Continue recursion for next row and/or next column

17


First


Previous


Next


Notebook

Step 4

Then one more row and/or column

18

Step 5

And so on...

19

Step 6

And so on...

20

Step 7

Getting closer

21


First


Previous


Next


Notebook

Step 8

Until we reach the last row and column

22

Finally

We reach the end, which corresponds to an LCS of length 5

Our answer includes both an optimal score, and a path back to find the alignment

23

LCS Code

Let's see how well the code matches the approach we sketched out...

 score = [0 0 0 0 0 0 0 0] backtrack = [0 0 0 0 0 0 0 0]
 [0 1 1 1 1 1 1 1] [0 3 2 2 2 2 3 2]
 [0 1 2 2 2 2 2 2] [0 1 3 2 2 3 2 2]
 [0 1 2 2 3 3 3 3] [0 1 1 2 3 2 2 2]
 [0 1 2 2 3 4 4 4] [0 1 3 2 1 3 2 2]
 [0 1 2 2 3 4 4 4] [0 1 3 2 1 3 2 2]
 [0 1 2 2 3 4 5 5] [0 3 1 2 1 1 3 2]
 [0 1 2 2 3 4 5 5] [0 1 3 2 1 3 1 2]

from numpy import *

def findLCS(v, w):
 score = zeros((len(v)+1,len(w)+1), dtype="int32")
 backt = zeros((len(v)+1,len(w)+1), dtype="int32")
 for i in xrange(1,len(v)+1):
 for j in xrange(1,len(w)+1):
 # find best score at each vertex
 if (v[i-1] == w[j-1]):
 score[i,j], backt[i,j] = max((score[i-1,j-1]+1,3), (score[i-1,j],1), (score[i,j-1],2))
 else:
 score[i,j], backt[i,j] = max((score[i-1,j],1), (score[i,j-1],2))
 return score, backt

v = "ATGTTAT"
w = "ATCGTAC"
s, b = findLCS(v,w)
for i in xrange(len(s)):
 print "%10s %-20s %12s %-20s" % ('' if i else 'score =', str(s[i]), '' if i else 'backtrack =', str(b[i]))

The same score matrix that we found by hand

"backtrack" keeps track of the arrows that we used

24

Backtracking

In our example we used arrows {↓, →, ↘}, which were represented in our matrix as {1,2,3} respectively. This

numbering is arbitrrary, except that it does break ties in our implementation (matches > w deletions > w

insertions).

Next we need code that finds a path from the end of our strings to the beginning using our arrow matrix

25


First


Previous


Next


Notebook

Code to extract our answer

We can write a simple recursive routine to return along the path of arrows that led to our best score.

ATGTA

def LCS(b,v,i,j):
 if ((i == 0) and (j == 0)):
 return ''
 if (b[i,j] == 3):
 result = LCS(b,v,i-1,j-1)
 result = result + v[i-1]
 return result
 else:
 if (b[i,j] == 2):
 return LCS(b,v,i,j-1)
 else:
 return LCS(b,v,i-1,j)

print LCS(b,v,b.shape[0]-1,b.shape[1]-1)

Technically correct, ATGTA is the LCS

 w = ATcGT_A_c
 v = AT_GTtAt_

Notice that we only need one of v or w since both contain the LCS

Perhaps we would like to get more than just the LCS; for example, the correpsonding alignment.

26

An alignment of v and w

v = AT_GTTAT_
w = ATCG_TA_C

def Alignment(b,v,w,i,j):
 if ((i == 0) and (j == 0)):
 return ['','']
 if (b[i,j] == 3):
 result = Alignment(b,v,w,i-1,j-1)
 result[0] += v[i-1]
 result[1] += w[j-1]
 return result
 if (b[i,j] == 2):
 result = Alignment(b,v,w,i,j-1)
 result[0] += "_"
 result[1] += w[j-1]
 return result
 if (b[i,j] == 1):
 result = Alignment(b,v,w,i-1,j)
 result[0] += v[i-1]
 result[1] += "_"
 return result

align = Alignment(b,v,w,b.shape[0]-1,b.shape[1]-1)
print "v =", align[0]
print "w =", align[1]

27

Alignment with a Scoring Matrix

Rather edit distance one could use a table with costs for every symbol aligned to any

other

Scoring matrices allow alignments to consider biological constraints

Alignments can be thought of as two sequences that differ due to mutations.

Some types of mutations are more common, or have little effect on the protein’s

function, therefore some mismatch penalties, δ(v , w), should be less harsh than others.

Example:

Although R (arginine) and K (lysine) are different amino acids, they might still have a

positive score.

Why? They are both positively charged amino acids and hydrophillic implying such a substitution may not

greatly change function of protein.

28

i j

Functional Conservation

Amino acid changes that tend to preserve the electro-chemical properties of the original residue

Polar to polar (aspartate → glutamate)

Nonpolar to nonpolar (alanine → valine)

Similarly behaving residues (leucine → isoleucine)

Common Amino acid substitution matrices

PAM

BLOSUM

DNA substitution matrices

DNA is less conserved than protein sequences

Less effective to compare coding regions at nucleotide level

29


First


Previous


Next


Notebook

PAM

Point Accepted Mutation (Dayhoff et al.)

1 PAM = PAM = 1% average change of all amino acid positions

After 100 PAMs of evolution, not every residue will have changed

some residues may have mutated several times

some residues may have returned to their original state

some residues may not changed at all

PAM ~ (PAM)

PAM is a widely used scoring matrix for very similar sequences

PAM is a widely used scoring matrix for evolutionarily distant sequences

PAM is based on an evolutionary model, but assumes every residue is mutating independently

Matrix is derived from proteins with similar peptide sequences

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...
 A R N D C Q E G H I L K ...
 Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...
 Arg R 3 17 4 3 2 5 3 2 6 3 2 9
 Asn N 4 4 6 7 2 5 6 4 6 3 2 5
 Asp D 5 4 8 11 1 7 10 5 6 3 2 5
 Cys C 2 1 1 1 52 1 1 2 2 2 1 1
 Gln Q 3 5 5 6 1 10 7 3 7 2 3 5
 ...
 Trp W 0 2 0 0 0 0 0 0 1 0 1 0
 Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1
 Val V 7 4 4 4 4 4 4 4 5 4 15 10

30

1

x 1
x

1

250

BLOSUM

Block Substitution Matrix

Scores derived from observations of the frequencies of

substitutions in shared blocks of proteins with related function

Matrix does not consider evolutionary distance

Data driven

BLOSUM50 was created using actual protein sequences sharing

no more than 50% identity, but common function

31


First


Previous


Next


Notebook

Global Alignment using a scoring matrix

v = TTCCGAGCGTTA
w = TTTC_AG_GTTA

import numpy

def GlobalAlign(v, w, scorematrix, indel):
 s = numpy.zeros((len(v)+1,len(w)+1), dtype="int32")
 b = numpy.zeros((len(v)+1,len(w)+1), dtype="int32")
 for i in xrange(0,len(v)+1):
 for j in xrange(0,len(w)+1):
 if (j == 0):
 if (i > 0):
 s[i,j] = s[i-1,j] + indel
 b[i,j] = 1
 continue
 if (i == 0):
 s[i,j] = s[i,j-1] + indel
 b[i,j] = 2
 continue
 score = s[i-1,j-1] + scorematrix[v[i-1],w[j-1]]
 vskip = s[i-1,j] + indel
 wskip = s[i,j-1] + indel
 s[i,j] = max(vskip, wskip, score)
 if (s[i,j] == vskip):
 b[i,j] = 1
 elif (s[i,j] == wskip):
 b[i,j] = 2
 else:
 b[i,j] = 3
 return (s, b)

match = {('A','A'): 2, ('A','C'): -1, ('A','G'): 0, ('A','T'): -1,
 ('C','A'): -1, ('C','C'): 2, ('C','G'): -1, ('C','T'): 0,
 ('G','A'): 0, ('G','C'): -1, ('G','G'): 2, ('G','T'): -1,
 ('T','A'): -1, ('T','C'): 0, ('T','G'): -1, ('T','T'): 2}

v = "TTCCGAGCGTTA"
w = "TTTCAGGTTA"

s, b = GlobalAlign(v,w,match,-1)
align = Alignment(b,v,w,b.shape[0]-1,b.shape[1]-1)
print "v =", align[0]
print "w =", align[1]

32

Local vs. Global Alignment

The Global Alignment Problem tries to find the highest scoring path between vertices (0,0) and (n,m) in the edit

graph.

The Local Alignment Problem tries to find the highest scoring subpath between all vertex pairs and

in the edit graph where and .

In an edit graph with negatively-weighted scores, a Local Alignment may score higher than a Global Alignment

Example:

Global Alignment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

Local Alignment finds longer conserved segment

 tccCAGTTATGTCAGgggacacgagcatgcagagac
 ||||||||||||
 aattgccgccgtcgttttcagCAGTTATGTCAGatc

33

(,)i1 j1 (,)i2 j2
>i2 i1 >j2 j1

Local Alignments: Why?

Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions.

Example:

Homeobox genes have a short region called the homeodomain that is highly conserved between species.

A global alignment would not find the homeodomain because it would try to align the ENTIRE sequence

Local Alignment Problem:

Goal: Find the best local alignment between two strings

Input: Strings v, w and scoring matrix δ

Output: Alignment of substrings of v and w whose alignment score is maximum among all possible alignment of

all possible substrings

34


First


Previous


Next


Notebook

Local Alignment Approach

A local alignment is a subpath in a global alignment

35

Brute Force Local Alignment

Find the best global alignment amoung all blocks

Long run time :

In the grid of size n x n there are vertices that may serve as a source.

For each such vertex computing alignments from to takes time.

This can be remedied by giving free rides

36

(, , ,)i1 j1 i2 j2

O()n4

O()n2 (,)i1 j1
(,)i1 j1 (,)i2 j2 O()n2


First


Previous


Next


Notebook

Local Alignment: Free Rides

Key Ideas: Add extra edges to our graph, consider all scores in matrix

The dashed edges represent a free ride from (0,0) to any other node

The largest value of s over the whole score matrix is the end point of the best local alignment (instead of s).

37

i,j n,m

The Local Alignment Recurrence

The zero is our free ride that allows the node to restart with a score of 0 at any point

What does this imply?

After solving for the entire score matrix, we then search for s with the highest score, this is

We follow our back tracking matrix until we reach a score of 0, whose coordinate becomes

38

i,j (,)i2 j2
(,)i1 j1

Next Time

Alignment with Gap Penalities

Multiple Alignment problem

Can we do better than ?

39

O(MN)


First


Previous


Next


Notebook

