
3/5/2018 Lecture15

http://localhost:8888/notebooks/Comp555S18/Lecture15.ipynb# 1/1

Comparing Sequences

By Miguel Andrade at English Wikipedia

1

Sequence Similarity

A common problem in Biology

Insulin Protein Sequence

Human MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

Dog MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEDLQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN

Cat MAPWTRLLPLLALLSLWIPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEDLQGKDAELGEAPGAGGLQPSALEAPLQKRGIVEQCCASVCSLYQLEHYCN

Pig MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAENPQAGAVELGGGLGGLQALALEGPPQKRGIVEQCCTSICSLYQLENYCN

All similar, but how similar?

How do you measure similarity?

Does Hamming distance work here?

Uses

To establish a phylogeny

To identify functional or conserved components of the sequence

2

Hand Alignments

Not that long ago, many aligments were done by hand

Human : MALWMRLLPLLALLALWGPdPAaAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQ_____________GSLQPLALEGs_LQKRGIVEQCCTSICSLYQLENYCN
 || |||||||||||||||||||||||||||||||||||||
 Dog : MALWMRLLPLLALLALWAPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREvEDLQvrDVELaG_APGeGGLQPLALEGA_LQKRGIVEQCCTSICSLYQLENYCN
 || |||| | ||| ||||||||| | |||||||||||||||||||||||||
 Cat : MApWtRLLPLLALLsLWiPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEDLQgkDaEL_GeAPGaGGLQPsALE_APLQKRGIVEQCCaSvCSLYQLEHYCN
 || |||| | || |||||||||||| ||||||||||||||||||||||||
 Pig : MALWtRLLPLLALLAlWAPAPAqAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEnpQagaVEL_Gggl__GGLQaLALEGpP_QKRGIVEQCCTSICSLYQLENYCN
 AFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAE QKRGIVEQCC SICSLYQLENYCN

Long conserved regions are shown below

Solution strategy?

Is this a well defined problem?

Is there an optimal or best solution

Did we find it

By the way, this is an easy case. Within vertebrates, the amino acid sequence of insulin is strongly

conserved.

3

The Alignment Game

Let's simplify the problem a bit by considering only 2 sequences, and estabishing rules as if it were a game.

Rules:

You must remove all characters from both sequences

There are 3 possible moves at any point in the game.

Each move removes at least one character from one of the two given strings

Pressing [Match] removes one left-most character from both sequences

You get 1 point if the characters match, otherwise you get 0 points

Pressing [Del] removes the left-most character from the top sequence

You lose 1 point

Pressing [Ins] removes the left-most character from the bottom sequence

You lose 1 point

Your point total is allowed to go negative

Objective: Get the most points

Human Dog Start Score: 0

Match

DEL

INS

MALWMRLLPLLALLALWGPDPAAA
MALWMRLLPLLALLALWAPAPTRA

4

How do you get the highest possible score?

The solution may not be unique

How many presses?

Minimum moves = Max(len(top), len(bot))

Maximum moves = len(top) + len(bot)

How many possible moves?

Less than

How big are these for our problem instance?

len(Human) = 98, len(dog) = 110

, almost a googol (not a google)

What algorithm is solves this problem

Make each move by considering only a short horizon following the current aligment thus far

5

O()3len(top)+len(bot)

≈ 1.73 ×3208 1099

There is an effcient solution

It relies on a rather suprising idea

The best score can be found for the len(top) and len(bot) strings by finding the best score for every pair of substrings

len(top[0:n]) and len(bot[0:m]) for all values of n up to len(top) and m up to len(bot)

Finding this solution requires only steps

It also requires a table of size

But before we solve this problem, let's look at another related related problem

Finding a best city tour on a Manhattan grid

6

O(len(top)len(bot))
Max(len(top), len(bot))

Manhattan Tourist Problem (MTP)

Imagine seeking a path from a given source to given destination in a Manhattan-like city grid that maximizes

the number of attractions (*) passed. With the following caveat– at every step you must make progress

towards the goal. We treat the city map as a graph, with a vertices at each intersection, and weighted edges

along each block. The weights are the number of attractions along each block.

7

Manhattan Tourist Game

Goal: Find the maximum weighted shortest path in a grid.

Input: A weighted grid G with two distinct vertices, one labeled source and the other labeled destination

Output: A shortest path in G from source to destination with the greatest weight

There are many shortest paths that go south 4 blocks and east 4 blocks

Of those paths, which sees the most sites?

8

MTP: A Greedy Algorithm Is Not Optimal

Different types of Greedy

Short horizon: At each block select the direction where the next block offers the most attractions

Long horizon: Look ahead at all streets between your current position and the destination, and go

towards the street with the most attractions

9

MTP: Observations

There are limited number of ways to reach any destination

For example, in our grid, one can reach the desitination node, (n,m), from either the north, (n,m-1), or the west (n-1,m).

for each of those routes there is a known number of sites to see, so the best path is:

Why is there only one edge per intersection? Because only one direction makes progress to our goal

This rule applies recursively with the base case

We could write this strategy as a recursive algorithm, but it would still not be effcient. Why?

10

Score(n,m) = Max(Score(n − 1,m) + Edge(n − 1,m), Score(n,m − 1) + Edge(n,m − 1))

Score(0, 0) = 0

A New Solution Strategy

Dynamic Programming is a technique for computing recurrence relations efficiently by storing and reusing

intermediate results

Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation

2. Consider all instances of the recurrence at each step (In our case this means all paths that lead to a

vertex).

3. Order evaluations so you will always have precomputed the needed partial results

Irony: Often the most effcient approach to solving a specific problem involves solving every smaller

subproblem.

11


First


Previous


Next


Notebook

MTP Dynamic Program Solution

The solution may not be unique, but it will have the best possible score

12

MTP Dynamic Program Strategy

Instead of solving the Manhattan Tourist problem directly, (i.e. the path from (0,0) to (n,m)) we will solve

a more general problem: find the longest path from (0,0) to any arbitrary vertex (i,j).

If the longest path from (0,0) to (n,m) passes through some vertex (i,j), then the path from (0,0) to (i,j)

must be the longest. Otherwise, you could increase the weight along your path by changing it.

13

MTP: Dynamic Program

Calculate optimal path score for every vertex in the graph between our source and destination

Each vertex’s score is the maximum of the prior vertices score plus the weight of the connecting edge in

between

14

MTP: Dynamic Program Continued

15

MTP: Dynamic Program Continued

16

MTP: Dynamic Program Continued

17

MTP: Dynamic Program Continued

18

MTP: Dynamic Program Continued

Once the destination node (intersection) is reached, we’re done.

Our table will have the answer of the maximum number of attractions stored in the entry associated with

the destination.

We use the links back in the table to recover the path. (Backtracking)

19

MTP: Recurrence

Computing the score for a point (i,j) by the recurrence relation:

The running time is nm for a n × m grid

(You visit all intersections once, and perform 2 tests)

(n = # of rows, m = # of columns)

20

Manhattan Is Not A Perfect Grid

Easy to fix. Just adds more recursion cases.

The score at point B is given by:

21

Other ways to safely explore the Manhattan

We chose to evaluate our table in a particular order. Uniform distances from the source (all points one

block away, then 2 blocks, etc.)

Other strategies:

Column by column

Row by row

Along diagonals

This choice can have performance implications

22

Next Time (after the break)

Return to biology

Solving sequence alignments using Dynamic Programming

23

