
Multi-String BWTs

1

MSBWT

A BWT containing a string collection instead of just a single string

Earliest: Mantaci et al. (2005), used concatenation approach

Bauer et al. (2011) - proposed version we will discuss today

Analogy:

Instead of searching for a substring within a single book, search every book of a library

Each book has it's own text, suffix array, and end-of-text delimiter

Searching allows us to find how many times a substring appears and in which texts

Bioinformatics?

Search all genomes? You could, but that's not the main application.

Search multiple chromosomes of an organism? You should, but even that is not the killer app

2

Naive Construction

Create all rotations for all strings in the collection

Sort all rotations together (Suffix Array)

Store the predecessor of each suffix

Strings are “cyclic”

The predecessor is always from the same string

Impossible to “jump” from one string to another

3

MSBWT's FM-index

Identical Definition

Find k-mer “CA”

Initialize to full range ('')

lo, hi = 0, 10

Find occurrences of 'A'

lo = Offset['A'] + FMindex[lo]['A'] = 2 + 0 = 2

hi = Offset['A'] + FMindex[hi]['A'] = 2 + 5 = 7

Find occurrences of “CA”

lo = Offset['C'] + FMindex[lo]['C'] = 7 + 0 = 7

hi = Offset['C'] + FMindex[hi]['C'] = 7 + 2 = 9

Searching and extracting suffixes are identical to a BWT

4

Incremental MSBWT Construction

A key tool missing from the BWTs toolbox--

adding new strings to an existing msBWT

You could reconstruct the suffix array of the msBWT

using suffix(i, fmindex) for all i, and then insert the

suffixes of the new string.

Variant of find(); Find the insertion point of new string's

j suffix, s

Add last character to msBWT

Update the FMindex

5

th
j

Merging msBWTs

BETTER YET! Rather than inserting new strings, build a BWT of

the new strings and merge the new and old BWTs

Suffixes of BTWs are already sorted

BTWs are interleaved

In the worse case (ties) the entire suffix must be considered, but

general the longest common prefix of suffixes is smaller

Minimal overhead

Well suited for divide an conquer approaches (like merge sort)

Easy to merge multiple data sets!

Compression improves!

6

Merging Steps

msBWT merging alternates between sorting and interleaving

7

In Python

TGAAGT$TGCT$AAAAAA
 0: $ACAT 5: A$TAT 10: ATA$T 15: GAGA$
 1: $ATAG 6: ACAT$ 11: ATAG$ 16: T$ACA
 2: $GAGA 7: AG$AT 12: CAT$A 17: TA$TA
 3: $TATA 8: AGA$G 13: G$ATA 18: TAG$A
 4: A$GAG 9: AT$AC 14: GA$GA 19: TATA$

def mergeBWT(bwt1, bwt2):
 interleave = [(c, 0) for c in bwt1] + [(c, 1) for c in bwt2]
 passes = min(len(bwt1), len(bwt2))
 for p in xrange(passes):
 i, j = 0, 0
 nextInterleave = []
 for c, k in sorted(interleave, key=lambda x: x[0]):
 if (k == 0):
 b = bwt1[i]
 i += 1
 else:
 b = bwt2[j]
 j += 1
 nextInterleave.append((b, k))
 if (nextInterleave == interleave):
 break
 interleave = nextInterleave
 return ''.join([c for c, k in interleave])

bwt1 = "TGTCAAAA"
bwt2 = "AAGTGTAA"
bwt12 = mergeBWT(bwt1, bwt2)
print bwt12
FM, Offset = FMIndex(bwt12)
for i in xrange(len(bwt12)):
 j = (i>>2)+(i&3)*(len(bwt12)/4)
 print "%2d: %s" % (j, recoverSuffix(j,bwt12,FM,Offset)), "\n" if (i % 4 == 3) else "",

8

MSBWT Applications

Instead of building a BWT of a reference genome, build a MSBWT of every sequenced reads

Arbitrary exact-match k-mer queries

O(k) time

Enables fast searches/counting

Recover an arbitrary read of length L from MSBWT

O(L) time

Enables extraction of user-selected reads

9

Compression of high-throughput sequencing

Using Run-length encoding again

Reasons we expect compression:

True genomic repeats: gene families, long repeats, etc.

Over-sampling: 30x coverage means we expect 30 copies of every k-mer pattern

Sequencing errors may break up runs

Technical errors may cause biases for or against a particular pattern

Real Mouse DNA-seq:

368654191 × 151 × 2 = ~112 Giga-bases

Compresses to ~15.3 GB using RLE (1.09 bits/base)

Real Mouse RNA-seq:

~8.9 Giga-bases

~1.2 GB using RLE (1.05 bits/base)

10

K-mer Search & Extraction

Basic Use:

Green: query k-mer. Red: forward reads. Blue: reverse-complement reads.

Search for all reads with a given k-mer

Extract all reads with that k-mer and its reverse-complement

Build a consensus

11

Reference-based Searches

Given a reference genome and region of that genome

Split reference into k-mers

Count the abundance of each k-mer and plot

Fast - O(k) time per k-mer

Similar to a post-alignment pileup

12

Reference Correction

13

Summary

Burrows-Wheeler Transform

Permutation of characters that represents a suffix array

Run-length encoded for compression

FM-index

Derived from BWT

Exploits LF-mapping property

O(k) search time for arbitrary k-mer, independent of BWT's size

Used in many fast aligners

MSBWT

Applies to string collections

Enables database-like access to reads via k-mer searches

14

Next Time

Sequence Alignment

15

