
Suffix Arrays and BWTs

1

A tweak to argsort()

Recall argsort() from last time:

def argsort(input):
 return sorted(range(len(input)), cmp=lambda i,j: 1 if input[i] >= input[j] else -1)

B = ["TAGACAT", "AGACAT", "GACAT", "ACAT", "CAT", "AT", "T"]
print argsort(B)

If we know that our input is suffixes from a single string

the suffix starts at index i

thus we don't need to extract the suffixes, just use offsets

2

i
th

Constructing a Suffix Array

[20, 9, 13, 18, 0, 7, 11, 16, 2, 4, 10, 6, 14, 19, 1, 8, 12, 17, 3, 15, 5]
20: a
 9: acanalpanama
13: alpanama
18: ama
 0: amanaplanacanalpanama
 7: anacanalpanama
11: analpanama
16: anama
 2: anaplanacanalpanama
 4: aplanacanalpanama
10: canalpanama
 6: lanacanalpanama
14: lpanama
19: ma
 1: manaplanacanalpanama
 8: nacanalpanama
12: nalpanama
17: nama
 3: naplanacanalpanama
15: panama
 5: planacanalpanama

def suffixArray(text):
 return sorted(range(len(text)), cmp=lambda i,j: 1 if text[i:] >= text[j:] else -1)

t = "amanaplanacanalpanama"
sa = suffixArray(t)
print sa
for i in sa:
 print "%2d: %s" % (i, t[i:])

3

Searching a Suffix Array

Searching a sorted list requires comparisons using binary search

Each comparision is over n symbols of the pattern

Thus, searching is

O(log(m))

O(nlog(m))

amanaplanacanalpanama
5 7 anacanalpanama

def findFirst(pattern, text, suffixarray):
 lo, hi = 0, len(text)
 while (lo < hi):
 middle = (lo+hi)/2
 if text[suffixarray[middle]:] < pattern:
 lo = middle + 1
 else:
 hi = middle
 return lo

first = findFirst("an", t, sa)
print t
print first, sa[first], t[sa[first]:]

4

Finding all Occurences

amanaplanacanalpanama
7 anacanalpanama
11 analpanama
16 anama
2 anaplanacanalpanama
4

def findLast(pattern, text, suffixarray):
 lo, hi = 0, len(text)
 while (lo < hi):
 middle = (lo+hi)/2
 if text[suffixarray[middle]:suffixarray[middle]+len(pattern)] <= pattern:
 lo = middle + 1
 else:
 hi = middle
 return lo

print t
last = findLast("an", t, sa)
for suffix in sa[first:last]:
 print suffix, t[suffix:]
print last - first

5

Longest repeated substring?

Given a suffix array, we can compute a helper function, call the Longest Common Prefix, LCP

SA,LCP,Suffix
 6: 0 aban
 0: 4 abananaban
 8: 1 an
 4: 2 anaban
 2: 3 ananaban
 7: 0 ban
 1: 3 bananaban
 9: 0 n
 5: 1 naban
 3: 2 nanaban

def computeLCP(text, suffixarray):
 m = len(text)
 lcp = [0 for i in xrange(m)]
 for i in xrange(1,m):
 u = suffixarray[i-1]
 v = suffixarray[i]
 n = 0
 while text[u] == text[v]:
 n += 1
 u += 1
 v += 1
 if (u >= m) or (v >=m):
 break
 lcp[i] = n
 return lcp

lcp = computeLCP(t, sa)

print "SA,LCP,Suffix"
for i, j in enumerate(sa):
 print "%2d: %2d %s" % (j, lcp[i], t[j:])

It should be evident that the longest repeated substring is at the suffix array index with the largest LCP

It is shared with one or more suffixes before it

Summary to this point

Where:

m is the length of the text to be searched

n is the length of the pattern (maximum length if more than 1)

p is the number of patterns

Method Storage Single Search Multi Search

Brute Force O(m) O(nm) O(p n m)

Keyword Tries O(pn) O(nm) O(p m)

Suffix Trees O(m)* O(n) O(p n)

Suffix Arrays O(m) O(n log(m)) O(p n log(m))

* with large constants, however

7

A rather unknown compression approach

In 1994, two researchers from DEC research labs in Palo Alto, Michael Burrows and David Wheeler, devised a

transformation for text that made it more compressible. Essentially, they devised a invertible permutation of

any text that compresses well if it exhibits redundancy.

Example:

 text = "amanaplanacanalpanama$"
 BWT(text) = "amnnn$lcpmnapaaaaaaala"

Notice how the transformed text has long runs of repeated characters

A simple form of compression, called run-length encoding, replaces repeated symbols by a (count, symbol)

tuple

If the count is 1, then just the symbol appears

Thus, the BWT(text) can be represented as:

 Compress(BWT(text)) = am3n$lcpmnap7ala (16 chars instead of 22)

The savings are even more impressive for longer strings

Notice, they introduced a special "end-of-text" symbol ($ in our case), which is lexigraphically before any

other symbol

8

Key Idea behind the BWT

Sorting Cyclical Suffixes (say that 3-times fast)

 "Cyclical Suffixes" "Sorted Cyclical Suffixes"
 tarheel$ $tarheel
 arheel$t arheel$t
 rheel$ta eel$tarh
 heel$tar el$tarhe
 eel$tarh heel$tar
 el$tarhe l$tarhee
 l$tarhee rheel$ta
 $tarheel tarheel$

The BWT of "tarheels" is the last column of the sorted cyclical suffixes "ltherea$"

Notice that the sorted cyclical suffixes have a lot in common with a suffix array.

The BWT is just the "predecessor symbol of these suffixes", where "$" precedes the

first symbol

9

BWT in Python

Straightforward implementation based on the definition (there are faster

construction methods)

annb$aa
amnnn$lcpmnapaaaaaaala
nn$bnbaaaaa

def BWT(t):
 # create a sorted list of all cyclic suffixes of t
 rotation = sorted([t[i:]+t[:i] for i in xrange(len(t))])
 # concatenate the last symbols from each suffix
 return ''.join(r[-1] for r in rotation)

print BWT("banana$")
print BWT("amanaplanacanalpanama$")
print BWT("abananaban$")

10

BWT from a Suffix Array

It is even simpler to compute the BWT from a Suffix Array

Finds each suffix's "predecessor" symbol

amanaplanacanalpanama$
[21, 20, 9, 13, 18, 0, 7, 11, 16, 2, 4, 10, 6, 14, 19, 1, 8, 12, 17, 3, 15, 5]
amnnn$lcpmnapaaaaaaala

def BWTfromSuffixArray(text, suffixarray):
 return ''.join(text[i-1] for i in suffixarray)

newt = t+'$'
sa = suffixArray(newt)
print newt
print sa
print BWTfromSuffixArray(newt, sa)

11

Inverting a BWT

A property of a transform is that there is no information loss-- they are invertible.

Algorithm: inverseBWT(bwt)

1. Create a table of len(bwt) empty strings

2. repeat length(bwt) times:

3. prepend bwt as the first column of the table

4. sort rows of the table alphabetically

5. return (row of table with bwt's 'EOF' character)

 0 1 2 3 4 5 6 7 8
 l l$ l$t l$ta l$tar l$tarh l$tarhe l$tarhee $tarheel
 t ta tar tarh tarhe tarhee tarheel tarheel$ arheel$t
 h he hee heel heel$ heel$t heel$ta heel$tar eel$tarh
 e ee eel eel$ eel$t eel$ta eel$tar eel$tarh el$tarhe
 r rh rhe rhee rheel rheel$ rheel$t rheel$ta heel$tar
 e el el$ el$t el$ta el$tar el$tarh el$tarhe l$tarhee
 a ar arh arhe arhee arheel arheel$ arheel$t rheel$ta
 $ $t $ta $tar $tarh $tarhe $tarhee $tarheel tarheel$

What else do you notice about the final table?

12

Inverse BWT in Python

tarheel$
amanaplanacanalpanama$
banana$
abananaban$

def inverseBWT(bwt):
 # initialize the table from t
 table = ['' for c in bwt]
 for j in xrange(len(bwt)):
 #insert the BWT as the first column
 table = sorted([c+table[i] for i, c in enumerate(bwt)])
 #return the row that ends with ‘$’
 return table[bwt.index('$')]

print inverseBWT("ltherea$")
print inverseBWT("amnnn$lcpmnapaaaaaaala")
print inverseBWT("annb$aa")
print inverseBWT("nn$bnbaaaaa")

13

BWT Compression

Uncompressed the BWT(text) is same length as original

text

But, it has a tendancy to form long runs of repeated

symbols

Why does it form runs?

All suffixes of repeated substrings sort together and share

predecessors

Somewhere further down the BWT there is a series of

suffixes starting with u's that have o's as predecessors

Redundancy leads to compression

14

What do BWTs have to do with searching strings?

There is close relationship between BWTs and Suffix Arrays

We can construct a suffix array from a BWT as we saw with

InverseBWT(bwt)

Is there a way to access this hidden suffix array for pattern searching?

In 2005 two researchers, Ferragina & Manzini, figured out how

First, an important property they uncovered

15

Last-First (LF) mapping property

The predecessor symbols of a suffix array preserve the relative suffix order

The occurance of a symbol in the BWT corresponds to its occurance in the suffix array

 $banana
 a$banan
 ana$ban
 anana$b
 banana$
 na$bana
 nana$ba

This property allows one two traverse the suffix array indirectly

ex: The 1st "a" of the bwt is also the first "a" of the suffix array, and its predecessor is the 1st "n", whose predecessor is the 2nd

"a", whose predecessor is the 2nd "n", and so on

Meanwhile, the number of character occurences in the BWT matches the suffix array (recall it is a

permutation)

16

j th j th

The FM-index

The FM-index is another helper data structure like the LCP

array mentioned previously

It is a 2D array whose size is , where is the

alphabet size

It keeps track of how many of each symbol have been seen in

the BWT prior to its symbol

The last m row is the totals for each symbol. By accumulating

these totals you can determine the BWT index corresponding

to the first of each symbol in the suffix array (Offset).

Can be generated by a single scan through the BWT

Memory overhead

17

[|text| + 1, |Σ|] |Σ|

i
th

O(m|Σ|)

Python for constructing FM-index

 $, a, b, n
 0, 0, 0, 0
 0, 1, 0, 0
 0, 1, 0, 1
 0, 1, 0, 2
 0, 1, 1, 2
 1, 1, 1, 2
 1, 2, 1, 2
 1, 3, 1, 2

def FMIndex(bwt):
 fm = [{c: 0 for c in bwt}]
 for c in bwt:
 row = {symbol: count + 1 if (symbol == c) else count for symbol, count in fm[-1].iteritems()}
 fm.append(row)
 offset = {}
 N = 0
 for symbol in sorted(row.keys()):
 offset[symbol] = N
 N += row[symbol]
 return fm, offset

bwt = "annb$aa"
FM, Offset = FMIndex(bwt)
print "%2s,%2s,%2s,%2s" % tuple([symbol for symbol in sorted(Offset.keys())])
for row in FM:
 print "%2d,%2d,%2d,%2d" % tuple([row[symbol] for symbol in sorted(row.keys())])

18

Find a Suffix's Predecessor

Given an index i in the BWT, find the index in the BWT of the suffix

preceding the suffix represented by i

Suffix 5 is preceded by suffix 2

Suffix 2 is preceded by suffix 6

Suffix 6 is preceded by suffix 3

The predecessor suffix of index i:

 c = BWT[i]
 predec = Offset[c] + FMIndex[i][c]

Predecessor of index 1

 c = BWT[1] # 'n'
 predec = O['n'] + FMIndex[1]['n'] # 5+0 = 5

Predecessor of index 5

 c = BWT[5] # 'a'
 predec = O['a'] + FMindex[5]['a'] # 1+1 = 2

Time to find predecessor: O(1)

19

Suffix Recovery

What is the suffix array entry corresponding to BWT index i?

Start at i and repeatedly find predecessors until i is reached again

To find the original string, just start with i = 0, the '$' index

0 $banana
1 a$banan
2 ana$ban
3 anana$b
4 banana$
5 na$bana
6 nana$ba

def recoverSuffix(i, BWT, FMIndex, Offset):
 suffix = ''
 c = BWT[i]
 predec = Offset[c] + FMIndex[i][c]
 suffix = c + suffix
 while (predec != i):
 c = BWT[predec]
 predec = Offset[c] + FMIndex[predec][c]
 suffix = c + suffix
 return suffix

recall that the FM-index that we built was "annb$aa", the BWT of "banana$"
for i in xrange(len(bwt)):
 print i, recoverSuffix(i, bwt, FM, Offset)

20

Finding Substrings

Searches are performed in reverse order

Searches return an interval of the suffix array that starts with the

desired substring

Finds all occurences of target

If there are no occurences it finds an empty interval

Starts with full BWT range (0, N)

Narrows the range one symbol at a time

To find substring "nana"

 # Initialize to full range of suffix array
 lo, hi = 0, 7
 # Find occurrences of "a"
 lo = Offset['a'] + FMIndex[lo]['a'] # lo = 1 + 0 = 1
 hi = Offset['a'] + FMIndex[hi]['a'] # hi = 1 + 3 = 4
 # Find occurrences of "na"
 lo = Offset['n'] + FMIndex[lo]['n'] # lo = 5 + 0 = 5
 hi = Offset['n'] + FMIndex[hi]['n'] # hi = 5 + 2 = 7
 # Find occurrences of "ana"
 lo = Offset['a'] + FMIndex[lo]['a'] # lo = 1 + 1 = 2
 hi = Offset['a'] + FMIndex[hi]['a'] # hi = 1 + 3 = 4
 # Find occurrences of "nana"
 lo = Offset['n'] + FMIndex[lo]['n'] # lo = 5 + 1 = 6
 hi = Offset['n'] + FMIndex[hi]['n'] # hi = 5 + 2 = 7

21

In Python

One of the simplest methods we've seen for searching

(2, 4)
(4, 5)
(4, 4)

def findBWT(pattern, FMIndex, Offset):
 lo = 0
 hi = len(FMIndex) - 1
 for symbol in reversed(pattern):
 lo = Offset[symbol] + FMIndex[lo][symbol]
 hi = Offset[symbol] + FMIndex[hi][symbol]
 return lo, hi

print findBWT("ana", FM, Offset)
print findBWT("ban", FM, Offset)
print findBWT("ann", FM, Offset)

22

BWT score card

Method Storage Single Search Multi Search

Brute Force O(m) O(nm) O(p n m)

Keyword Tries O(pn) O(nm) O(p m)

Suffix Trees O(m)* O(n) O(p n)

Suffix Arrays O(m log(m)) O(n log(m)) O(p n log(m))

BWT O(m)† O(n) O(p n)

Where:

m is the length of the text to be searched

n is the length of the pattern (maximum length if more than 1)

p is the number of patterns

* With large constants, however

† Usually significantly smaller than m

23

BWT Gotchas

While the BWT itself is small, its FM-index can be large

A full FM-index requires O(|Σ| m) space

But it can be sampled with minimal performance impact

rather than store the FM-index for all indices store only 1 in F

when accessing find the closest smaller instantiated index

and use the BWT to fill in the requested missing values

Example with F = 3

when FMIndex[5]['b'] is accessed

retrive FMIndex[3]['b'] = 0

scan BWT from [3:5] counting 'b's (1) and adding them to the count at FMIndex[3]

return the count = 1

In practice F values as large as 1000 have little performance impact

Why? BWT is small and tends to stay in cache

To have all the capabilities of a Suffix Tree, a BWT needs an LCP array

24

Real-World uses of BWTs

BWTs are the dominant representation and method used

for Sequence Alignment

Sequence-Alignment Problem: Given a collection of

short nucleotide fragments (either DNA or RNA) find

the best approximate alignment for each read in a

reference genome

Bowtie (2009) and BWA (2009) are the dominant

aligners

As a preprocess a BWT of the reference genome is built

(≈ 1-3 GB)

Alignment:

given a read from a sequenced fragment (72-150 base pairs

typically)

cut the read into smaller seeds (25-31 base pairs typically)

Search for an exact match to each using the BWT

Use local alignment (dynamic program) to match the remaining bases

25

Next Time

We go deeper down the BWT rabbit hole

26

