Combinatorial Pattern Matching

CowBINRTOR (AL PILLOW TV

[Uow do lmm’!wmmwuﬂt ?“l

Wi lovivia, sewaEONL
Jaere me.mnm[) :é e, hseunnine ﬂ-,

% M;,l.wr M'L ove 5"’""1‘ “ k::'l "‘-'-

wg.ula £ oveler does Mﬂw" 1_0

P *ﬁ;ﬂ“ i

:: \-'uﬂl'dﬂ-'g aund w"ﬁ‘)K‘ s w‘-u,i'
we howe (ja- kt‘)*"""

lc.ﬂh love o 14 E'W“-V‘s”

Sconsaip ceq Lﬂ"""':f'"

() i, sliics!
| Ll

A Recurring Problem

 Finding patterns within sequences rf‘l_Y—“L—“-’EV__‘r__fg@:ﬁ:\c’_ﬁ&’_?E
« Variants on this idea %! We're Going on a Pattern Hunt ‘E

» Finding repeated motifs amoungst a set of strings |

= What are the most frequent k-mers
» How many time does a specific k-mer appear

T W™ Ll T e

» Fundamental problem: Pattern Matching
» Find all positions of a particular substring in given sequence?

Pattern Matching

» Goal: Find all occurrences of a pattern in a text
 Input: Pattern p = py,py, ... p, andtextt = 1,15, ... 1,
o Qutput: All positions 1 <i < (m — n + 1) such that the n-letter substring of t starting at i matches p

def bruteForcePatternMatching(p, t):
locations = []
for i in xrange(0, len(t)-len(p)+1):
if t[i:i+len(p)] == p:
locations.append(1i)
return locations

print bruteForcePatternMatching("ssi", "imissmissmississippi')

[11, 14]

Pattern Matching Performance

o Performance:
» m - length of the text t
= 1 - the length of the pattern p
» Search Loop - executed O(m) times
» Comparison - O(n) symbols compared
» Total cost - O(mn) per pattern
 In practice, most comparisons terminate early

« Worst-case:
™ p = llAAATlI
st = "AAAAAAAAAAAAAAAAAAAAAAAT"

We can do better!

If we preprocess our pattern we can search more effciently (O(n))

Example:

imissmissmississippi

1. s

2. S

3. S

4, SSi

5. S

6. SSi

7. S

8. SSI - match at 11
9. SSI - match at 14
10. S

11, S

12. S

« At steps 4 and 6 after finding the mismatch i # m we can skip over all positions tested because we know that the suffix "sm"”
is not a prefix of our pattern "ssi"”

« Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in
"AAAA™.

« How about finding multiple patterns [p;, p2,...,p3] int

We can preprocess the set of strings we are seeking to minimize the number of

Keyword Trees

comparisons
Idea: Combine patterns that share prefixes, to share those comparisons

Stores a set of keywords in a rooted labeled tree

Each edge labeled with a letter from an alphabet

All edges leaving a given vertex have distinct labels

Leaf vertices are indicated

Every keyword stored can be spelled on a path from root to some leaf vertex
Searches are performed by “threading” the target pattern through the tree

A tree is a special graph as discussed previously

one connected component
Nnodes

N-1edges

No loops

Exactly one path from any.

A Trieis a tree that is related to a sequence.

Generally, there is a 1-to-1 correspondence between either nodes or edges of the trie and a

symbol of the sequence

Prefix Trie Match

 Input: A text tand a trie P of patterns
o Qutput: True if tleads to a leaf in P; False otherwise

What is output for:

» apple
» band

o april

Performance:

o O(m) - the length of the text, t
» Independent of how many strings are in the Keyword Trie

Multiple Pattern Matching

o t-the text to search through
o P-the trie of patterns to search for

def multiplePatternMatching(t, P):
locations = []
for i in xrange(0, len(t)):
if PrefixTrieMatch(t[i:], P):
locations.append(1i)
return locations

Multiple Pattern Matching Example

multiplePatternMatching(“bananapple”, P):

0: PrefixTrieMatching(“bananapple”, P) = True
PrefixTrieMatching(“ananapple”, P) = False
PrefixTrieMatching(“nanapple”, P) = False
PrefixTrieMatching(“anapple”, P) = False
PrefixTrieMatching(“napple”, P) = False
PrefixTrieMatching(“apple”, P) = True
PrefixTrieMatching(“pple”, P) = False
PrefixTrieMatching(“ple”, P) = False
PrefixTrieMatching(“le”, P) = False
PrefixTrieMatching(“e”, P) = False

© 0o ~NOO U WNE

locations = [0, 5]

» Based on our previous speed-up
« We can add failure edges to our Trie
o Aho-Corasick Algorithm

bapple
bap
apple

Improvements

10

Multiple Pattern Matching Performance

m - len(t)

d - max depth of P (longest pattern in P)

O(md) to find all patterns

Can be decreased further to O(m) using Aho-Corasick Algorithm (see pg 353)

Memory issues
= Tries require a lot of memory
» Practical implementation is challenging
» Genomic reads - millions to billions of

Patterns typically of length > 100

11

Another Twist

« What if our list of keywords were simply all suffixes of a given string

Example: ACATG
CATG

ATG

TG

G

 The resulting keyword tree:
« A Suffix Trie

12

Suffix Tree

A compressed Suffix Trie

e Combines nodes with in and out degree 1
o Edges are text substrings
 All internal nodes have at least 3 edges

e All leaf nodes are labeled with an index

13

fix Trees

Uses for Sui

« Suffix trees hold all suffixes of a text, T
s ie.,, ATCGC: ATCGC, TCGC, CGC, GC, C

o Can be built in O(m) time for text of length m

 To find any pattern P in a text:
= Build suffix tree for text, O(m), m = IT|
» Thread the pattern through the suffix tree
= Can find pattern in O(n) time! (n = |PI)

o O(IT| + |Pl) time for "Pattern Matching Problem"
(better than Naive O(|P||T|)

o Build suffix tree and lookup pattern

o Multiple Pattern Matching in O(IT'| + kIPl)

14

Suffix Tree Overhead

Input: text of length m
Computation

» O(m) to compute a suffix tree

= Does not require building the suffix trie first
Memory

» O(m) - nodes are stored as offsets and lengths
Huge hidden constant, best implementations
Requires about 20*m bytes
3 GB human genome = 60 GB RAM

15

Suffix Tree Examples

o What is the string represented in the suffix tree?

» What letter occurs most frequently?

« How many times doaes "ATG" appear, and where?
» How long is the longest repeated k-mer?

16

Suffix Trees: Theory vs. Practice

« In theory, suffix trees are extremely powerful for making a variety of queries concerning a sequence
» What is the shortest unique substring?
= How many times does a given string appear in a text?

 Despite the existence of linear-time construction algorithms, and O(m) search times, suffix trees are still rarely used for
genome-scale searching
 Large storage overhead

17

Substring Searching

« Isthere some other data structure to gain efficent access to all of the suffixes of a given string with less overhead than a
suffix tree?
» Some things we know
» Searching an unordered list of items with length n generally requires O(n1) steps
» However, if we sort our items first, then we can search using O(log(n)) steps
» Thus, if we plan to do frequent searchs there is some advantage to performing a sort first and amortizing its cost over many searchs

« For strings suffixes are interesting items. Why?

Suffixes: panamabananas Sorted Suffixes: abananas
anamabananas amabananas
namabananas anamabananas
amabananas ananas
mabananas anas
abananas as
bananas bananas
ananas mabananas
nanas namabananas
anas nanas
nas nas
as panamabananas

S S

Is there any use for a list of sorted suffixes?

(lometimes the
questions are
coMplicate

ald the
aNiwex(arve

Pt

k\L\L\

Questions you can ask

Sorted Suffixes:

abananas
amabananas
anamabananas
ananas

anas

as

bananas
mabananas
namabananas
nanas

nas
panamabananas
s

» Does the substring "nana" appear in the orginal string? How?

« How many times does "ana" appear in the string?

o What is the most/least frequent letter in the orginal string?

o What is the most frequent two-letter substring in the orginal string?

19

Properties of a Naive sorted sui

Size of the sorted list if the given text has a length of m? O(m?)

Cost of the sort? O(m? log(m))
Not practical for big m
There are many ways to sort

= What is an in place sort?

» What is a stable sort?
» What is an arg sort?

fix implementation

20

Arg Sorting

Consider the list:

[7,2,4,3,1,5,0,6]

When sorted it is simply:

[0,1,2, 3I415l 6I7]

Its arg sort is:

(6, 4,1, 3, 2, 5, 7, 0]

« The " element in the arg sort is the index of the it element from the orginal list when sorted.
U Thus, [A[i] for i in argsort(A)] == sorted[A]

21

Code for Arg Sorting

def argsort(input):
return sorted(range(len(input)), cmp=lambda i,j: 1 if input[i] >= input[j] else -1)

A = [712I4!311!510I6]
print argsort(A)
print [A[i] for i in argsort(A)]

print

B = ["TAGACAT", "AGACAT", "GACAT", "ACAT", "CAT", "AT", "T"]
print argsort(B)

print [B[i] for i in argsort(B)]

r 17 3’ 2/ 5’ 7/ 0]
2, 3, 4,5, 6, 7]

[31 1l 5[4I 2[6/ 0]
['ACAT', 'AGACAT', 'AT', 'CAT', 'GACAT', 'T', 'TAGACAT']

Next Time

» We'll see how arg sorting can be used to simplify representing our sorted
list of suffixes

« Suffix arrays

o Burrows-Wheeler Transforms

 Applications in sequence alignment

23

