
Combinatorial Pattern Matching

1

A Recurring Problem

Finding patterns within sequences

Variants on this idea

Finding repeated motifs amoungst a set of strings

What are the most frequent k-mers

How many time does a specific k-mer appear

Fundamental problem: Pattern Matching

Find all positions of a particular substring in given sequence?

2

Pattern Matching

Goal: Find all occurrences of a pattern in a text

Input: Pattern and text

Output: All positions 1 < i < (m – n + 1) such that the n-letter substring of t starting at i matches p

p = , ,…p1 p2 pn t = , ,…t1 t2 tm

[11, 14]

def bruteForcePatternMatching(p, t):
 locations = []
 for i in xrange(0, len(t)-len(p)+1):
 if t[i:i+len(p)] == p:
 locations.append(i)
 return locations

print bruteForcePatternMatching("ssi", "imissmissmississippi")

3

Pattern Matching Performance

Performance:

m - length of the text t

n - the length of the pattern p

Search Loop - executed O(m) times

Comparison - O(n) symbols compared

Total cost - O(mn) per pattern

In practice, most comparisons terminate early

Worst-case:

p = "AAAT"
t = "AAAAAAAAAAAAAAAAAAAAAAAT"

4

We can do better!

If we preprocess our pattern we can search more effciently (O(n))

Example:

 imissmissmississippi
 1. s
 2. s
 3. s
 4. SSi
 5. s
 6. SSi
 7. s
 8. SSI - match at 11
 9. SSI - match at 14
 10. s
 11. s
 12. s

At steps 4 and 6 after finding the mismatch we can skip over all positions tested because we know that the suffix "sm"

is not a prefix of our pattern "ssi"

Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in

"AAAA").

How about finding multiple patterns in

5

i ≠ m

[, , . . . ,]p1 p2 p3 t

Keyword Trees

We can preprocess the set of strings we are seeking to minimize the number of

comparisons

Idea: Combine patterns that share prefixes, to share those comparisons

Stores a set of keywords in a rooted labeled tree

Each edge labeled with a letter from an alphabet

All edges leaving a given vertex have distinct labels

Leaf vertices are indicated

Every keyword stored can be spelled on a path from root to some leaf vertex

Searches are performed by “threading” the target pattern through the tree

A tree is a special graph as discussed previously

one connected component

N nodes

N-1 edges

No loops

Exactly one path from any.

A Trie is a tree that is related to a sequence.

Generally, there is a 1-to-1 correspondence between either nodes or edges of the trie and a

symbol of the sequence

6

Prefix Trie Match

Input: A text t and a trie P of patterns

Output: True if t leads to a leaf in P; False otherwise

What is output for:

apple

band

april

Performance:

 - the length of the text, t

Independent of how many strings are in the Keyword Trie

7

O(m)

Multiple Pattern Matching

t - the text to search through

P - the trie of patterns to search for

def multiplePatternMatching(t, P):
 locations = []
 for i in xrange(0, len(t)):
 if PrefixTrieMatch(t[i:], P):
 locations.append(i)
 return locations

8

Multiple Pattern Matching Example

multiplePatternMatching(“bananapple”, P):
 0: PrefixTrieMatching(“bananapple”, P) = True
 1: PrefixTrieMatching(“ananapple”, P) = False
 2: PrefixTrieMatching(“nanapple”, P) = False
 3: PrefixTrieMatching(“anapple”, P) = False
 4: PrefixTrieMatching(“napple”, P) = False
 5: PrefixTrieMatching(“apple”, P) = True
 6: PrefixTrieMatching(“pple”, P) = False
 7: PrefixTrieMatching(“ple”, P) = False
 8: PrefixTrieMatching(“le”, P) = False
 9: PrefixTrieMatching(“e”, P) = False

locations = [0, 5]

9

Improvements

Based on our previous speed-up

We can add failure edges to our Trie

Aho-Corasick Algorithm

 bapple
 bap
 apple

10

Multiple Pattern Matching Performance

m - len(t)

d - max depth of P (longest pattern in P)

O(md) to find all patterns

Can be decreased further to O(m) using Aho-Corasick Algorithm (see pg 353)

Memory issues

Tries require a lot of memory

Practical implementation is challenging

Genomic reads - millions to billions of

Patterns typically of length > 100

11

Another Twist

What if our list of keywords were simply all suffixes of a given string

 Example: ACATG
 CATG
 ATG
 TG
 G

The resulting keyword tree:

A Suffix Trie

12

Suffix Tree

A compressed Suffix Trie

Combines nodes with in and out degree 1

Edges are text substrings

All internal nodes have at least 3 edges

All leaf nodes are labeled with an index

13

Uses for Suffix Trees

Suffix trees hold all suffixes of a text, T

i.e., ATCGC: ATCGC, TCGC, CGC, GC, C

Can be built in time for text of length

To find any pattern P in a text:

Build suffix tree for text, ,

Thread the pattern through the suffix tree

Can find pattern in time! ()

 time for "Pattern Matching Problem"

(better than Naïve O(|P||T|)

Build suffix tree and lookup pattern

Multiple Pattern Matching in

14

O(m) m

O(m) m = |T |

O(n) n = |P|

O(|T | + |P|)

O(|T | + k|P|)

Suffix Tree Overhead

Input: text of length m

Computation

O(m) to compute a suffix tree

Does not require building the suffix trie first

Memory

O(m) - nodes are stored as offsets and lengths

Huge hidden constant, best implementations

Requires about 20*m bytes

3 GB human genome = 60 GB RAM

15

Suffix Tree Examples

What is the string represented in the suffix tree?

What letter occurs most frequently?

How many times doaes "ATG" appear, and where?

How long is the longest repeated k-mer?

16

Suffix Trees: Theory vs. Practice

In theory, suffix trees are extremely powerful for making a variety of queries concerning a sequence

What is the shortest unique substring?

How many times does a given string appear in a text?

Despite the existence of linear-time construction algorithms, and O(m) search times, suffix trees are still rarely used for

genome-scale searching

Large storage overhead

17

Substring Searching

Is there some other data structure to gain efficent access to all of the suffixes of a given string with less overhead than a

suffix tree?

Some things we know

Searching an unordered list of items with length n generally requires O(n) steps

However, if we sort our items first, then we can search using O(log(n)) steps

Thus, if we plan to do frequent searchs there is some advantage to performing a sort first and amortizing its cost over many searchs

For strings suffixes are interesting items. Why?

 Suffixes: panamabananas Sorted Suffixes: abananas
 anamabananas amabananas
 namabananas anamabananas
 amabananas ananas
 mabananas anas
 abananas as
 bananas bananas
 ananas mabananas
 nanas namabananas
 anas nanas
 nas nas
 as panamabananas
 s s

18

Questions you can ask

Is there any use for a list of sorted suffixes?

 Sorted Suffixes: abananas
 amabananas
 anamabananas
 ananas
 anas
 as
 bananas
 mabananas
 namabananas
 nanas
 nas
 panamabananas
 s

Does the substring "nana" appear in the orginal string? How?

How many times does "ana" appear in the string?

What is the most/least frequent letter in the orginal string?

What is the most frequent two-letter substring in the orginal string?

19

Properties of a Naive sorted suffix implementation

Size of the sorted list if the given text has a length of m?

Cost of the sort?

Not practical for big m

There are many ways to sort

What is an in place sort?

What is a stable sort?

What is an arg sort?

20

O()m2

O(log(m))m2

Arg Sorting

Consider the list:

[7,2,4,3,1,5,0,6]

When sorted it is simply:

[0,1,2,3,4,5,6,7]

Its arg sort is:

[6, 4, 1, 3, 2, 5, 7, 0]

The i element in the arg sort is the index of the i element from the orginal list when sorted.

Thus, [A[i] for i in argsort(A)] == sorted[A]

21

th th

Code for Arg Sorting

[6, 4, 1, 3, 2, 5, 7, 0]
[0, 1, 2, 3, 4, 5, 6, 7]

[3, 1, 5, 4, 2, 6, 0]
['ACAT', 'AGACAT', 'AT', 'CAT', 'GACAT', 'T', 'TAGACAT']

def argsort(input):
 return sorted(range(len(input)), cmp=lambda i,j: 1 if input[i] >= input[j] else -1)

A = [7,2,4,3,1,5,0,6]
print argsort(A)
print [A[i] for i in argsort(A)]

print
B = ["TAGACAT", "AGACAT", "GACAT", "ACAT", "CAT", "AT", "T"]
print argsort(B)
print [B[i] for i in argsort(B)]

22

Next Time

We'll see how arg sorting can be used to simplify representing our sorted

list of suffixes

Suffix arrays

Burrows-Wheeler Transforms

Applications in sequence alignment

23

