
2/19/2018 Lecture11

http://localhost:8888/notebooks/Comp555S18/Lecture11.ipynb# 1/1

The Realities of Genome Assembly

1

From Last Time

What we learned from a related "Minimal Superstring" problem

Can be constructed by finding a Hamiltonian path of an k-dimensional De Bruijn graph over σ symbols

Brute-force method is explores all paths through vertices

Branch-and-Bound method considers only paths composed of edges

Finding a Hamiltonian path is an NP-complete problem

There is no known method that can solve it efficiently as the number of vertices grows

Can be constructed by finding a Eulerian path of a (k−1)-dimensional De Bruijn graph where k-mers are edges.

Euler's method finds a path using all edges in steps

Graph must statisfy contraints to be sure that a solution exists

All but two vertices must be balanced

The other two must be semi-balanced

2

V! V

O(E) ≡ O()V
2

Applications to Assembling Genomes

Extracted DNA is broken into random small fragments

100-200 bases are read from one or both ends of the fragment

Typically, each base of the genome is covered by 10x - 30x fragments

3

Genome Assembly vs Minimal Superstring

Mininmal substring problem

Every k-mer is known and used as a vertex, (all)

Paths, and there may be multiple, are solutions

Read fragments

No guarantee that we will see every k-mer

Can't disambiguate repeats

4

σ
k

A small "Toy" example

 GACGGCGGCGCACGGCGCAA - Our toy sequence from 2 lectures ago
 GACGG CGCAC
 ACGGC GCACG
 CGGCG CACGG - The complete set of 16 5-mers
 GGCGG ACGGC
 GCGGC CGGCG
 CGGCG GGCGC
 GGCGC GCGCA
 GGCGA CGCAA

All k-mers is equivalent to k× coverage, ignoring boundaries

Four repeated k-mers {ACGGC, CGGCG, GCGCA, GGCGC}

5

Some Code

First let's add a function to uniquely label repeated k-mers

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2', 'GCGGC', 'GGCGC_
1', 'GGCGC_2', 'GGCGG']

def kmersUnique(seq, k):
 kmers = sorted([seq[i:i+k] for i in xrange(len(seq)-k+1)])
 for i in xrange(1,len(kmers)):
 if (kmers[i] == kmers[i-1][0:k]):
 t = kmers[i-1].find('_')
 if (t >= 0):
 n = int(kmers[i-1][t+1:]) + 1
 kmers[i] = kmers[i] + "_" + str(n)
 else:
 kmers[i-1] = kmers[i-1] + "_1"
 kmers[i] = kmers[i] + "_2"
 return kmers

kmers = kmersUnique("GACGGCGGCGCACGGCGCAA", 5)
print kmers

6

Our Graph class from last lecture

import itertools

class Graph:
 def __init__(self, vlist=[]):
 """ Initialize a Graph with an optional vertex list """
 self.index = {v:i for i,v in enumerate(vlist)}
 self.vertex = {i:v for i,v in enumerate(vlist)}
 self.edge = []
 self.edgelabel = []
 def addVertex(self, label):
 """ Add a labeled vertex to the graph """
 index = len(self.index)
 self.index[label] = index
 self.vertex[index] = label
 def addEdge(self, vsrc, vdst, label='', repeats=True):
 """ Add a directed edge to the graph, with an optional label.
 Repeated edges are distinct, unless repeats is set to False. """
 e = (self.index[vsrc], self.index[vdst])
 if (repeats) or (e not in self.edge):
 self.edge.append(e)
 self.edgelabel.append(label)
 def hamiltonianPath(self):
 """ A Brute-force method for finding a Hamiltonian Path.
 Basically, all possible N! paths are enumerated and checked
 for edges. Since edges can be reused there are no distictions
 made for *which* version of a repeated edge. """
 for path in itertools.permutations(sorted(self.index.values())):
 for i in xrange(len(path)-1):
 if ((path[i],path[i+1]) not in self.edge):
 break
 else:
 return [self.vertex[i] for i in path]
 return []
 def SearchTree(self, path, verticesLeft):
 """ A recursive Branch-and-Bound Hamiltonian Path search.
 Paths are extended one node at a time using only available
 edges from the graph. """

if (len(verticesLeft) == 0):

7

Our Graph class from last lecture

[]
 def SearchTree(self, path, verticesLeft):
 """ A recursive Branch-and-Bound Hamiltonian Path search.
 Paths are extended one node at a time using only available
 edges from the graph. """
 if (len(verticesLeft) == 0):
 self.PathV2result = [self.vertex[i] for i in path]
 return True
 for v in verticesLeft:
 if (len(path) == 0) or ((path[-1],v) in self.edge):
 if self.SearchTree(path+[v], [r for r in verticesLeft if r != v]):
 return True
 return False
 def hamiltonianPathV2(self):
 """ A wrapper function for invoking the Branch-and-Bound
 Hamiltonian Path search. """
 self.PathV2result = []
 self.SearchTree([],sorted(self.index.values()))
 return self.PathV2result
 def degrees(self):
 """ Returns two dictionaries with the inDegree and outDegree
 of each node from the graph. """
 inDegree = {}
 outDegree = {}
 for src, dst in self.edge:
 outDegree[src] = outDegree.get(src, 0) + 1
 inDegree[dst] = inDegree.get(dst, 0) + 1
 return inDegree, outDegree
 def verifyAndGetStart(self):
 inDegree, outDegree = self.degrees()
 start = 0
 end = 0
 for vert in self.vertex.iterkeys():
 ins = inDegree.get(vert,0)
 outs = outDegree.get(vert,0)
 if (ins == outs):
 continue
 elif (ins - outs == 1):
 end = vert

7

Our Graph class from last lecture

 elif (ins outs 1):
 end = vert
 elif (outs - ins == 1):
 start = vert
 else:
 start, end = -1, -1
 break
 if (start >= 0) and (end >= 0):
 return start
 else:
 return -1
 def eulerianPath(self):
 graph = [(src,dst) for src,dst in self.edge]
 currentVertex = self.verifyAndGetStart()
 path = [currentVertex]
 # "next" is where vertices get inserted into our tour
 # it starts at the end (i.e. it is the same as appending),
 # but later "side-trips" will insert in the middle
 next = 1
 while len(graph) > 0:
 for edge in graph:
 if (edge[0] == currentVertex):
 currentVertex = edge[1]
 graph.remove(edge)
 path.insert(next, currentVertex)
 next += 1
 break
 else:
 for edge in graph:
 try:
 next = path.index(edge[0]) + 1
 currentVertex = edge[0]
 break
 except ValueError:
 continue
 else:
 print "There is no path!"
 return False

return path

7

Our Graph class from last lecture

 def eulerEdges(self, path):
 edgeId = {}
 for i in xrange(len(self.edge)):
 edgeId[self.edge[i]] = edgeId.get(self.edge[i], []) + [i]
 edgeList = []
 for i in xrange(len(path)-1):
 edgeList.append(self.edgelabel[edgeId[path[i],path[i+1]].pop()])
 return edgeList
 def render(self, highlightPath=[]):
 """ Outputs a version of the graph that can be rendered
 using graphviz tools (http://www.graphviz.org/)."""
 edgeId = {}
 for i in xrange(len(self.edge)):
 edgeId[self.edge[i]] = edgeId.get(self.edge[i], []) + [i]
 edgeSet = set()
 for i in xrange(len(highlightPath)-1):
 src = self.index[highlightPath[i]]
 dst = self.index[highlightPath[i+1]]
 edgeSet.add(edgeId[src,dst].pop())
 result = ''
 result += 'digraph {\n'
 result += ' graph [nodesep=2, size="10,10"];\n'
 for index, label in self.vertex.iteritems():
 result += ' N%d [shape="box", style="rounded", label="%s"];\n' % (index, label)
 for i, e in enumerate(self.edge):
 src, dst = e
 result += ' N%d -> N%d' % (src, dst)
 label = self.edgelabel[i]
 if (len(label) > 0):
 if (i in edgeSet):
 result += ' [label="%s", penwidth=3.0]' % (label)
 else:
 result += ' [label="%s"]' % (label)
 elif (i in edgeSet):
 result += ' [penwidth=3.0]'
 result += ';\n'
 result += ' overlap=false;\n'
 result += '}\n'

7

Finding Paths in our K-mer De Bruijn Graphs

['GACGG', 'ACGGC_1', 'CGGCG_1', 'GGCGC_1', 'GCGCA_1', 'CGCAC', 'GCACG', 'CACGG', 'ACGGC_2', 'CGGCG_2', 'GGCGG', 'GCGGC', 'CGGCG_3', 'GGCGC_
2', 'GCGCA_2', 'CGCAA']
GACGGCGCACGGCGGCGCAA
False

k = 5
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G1 = Graph(kmers)
for vsrc in kmers:
 for vdst in kmers:
 if (vsrc[1:k] == vdst[0:k-1]):
 G1.addEdge(vsrc,vdst)
path = G1.hamiltonianPathV2()

print path
seq = path[0][0:k]
for kmer in path[1:]:
 seq += kmer[k-1]
print seq
print seq == target

8

Not what we Expected

The one we hoped for. Visits CGGCG before CGGCG

The one we found Visits CGGCG before CGGCG

9

3 2 2 3

What's the Problem?

There are many possible Hamiltonian Paths

How do they differ?

There were two possible paths leaving any [CGGCG] node

[CGGCG] → [GGCGC]

[CGGCG] → [GGCGG]

A valid solution can be found down either path

There might be even more solutions

Genome assembly appears ambiguous like the Minimal Substring problem, but is it?

10

How about an Euler Path?

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2', 'GCGGC', 'GGCGC_
1', 'GGCGC_2', 'GGCGG']
['ACGG', 'CACG', 'CGCA', 'CGGC', 'GACG', 'GCAA', 'GCAC', 'GCGC', 'GCGG', 'GGCG']
[4, 0, 3, 9, 8, 3, 9, 7, 2, 6, 1, 0, 3, 9, 7, 2, 5]
['GACGG', 'ACGGC_2', 'CGGCG_3', 'GGCGG', 'GCGGC', 'CGGCG_2', 'GGCGC_2', 'GCGCA_2', 'CGCAC', 'GCACG', 'CACGG', 'ACGGC_1', 'CGGCG_1', 'GGCGC_
1', 'GCGCA_1', 'CGCAA']
GACGGCGGCGCACGGCGCAA
True

k = 5
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print kmers

nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print nodes
G2 = Graph(nodes)
for code in kmers:
 G2.addEdge(code[:k-1],code[1:k],code)
path = G2.eulerianPath()
print path
path = G2.eulerEdges(path)
print path

seq = path[0][0:k]
for kmer in path[1:]:
 seq += kmer[k-1]
print seq
print seq == target

11

The k-1 De Bruijn Graph with k-mer edges

We got the right answer, but we were lucky.

There is a path in this graph that matches the Hamiltonian path that we found before

12

What are the Differences?

How might we favor one solution over the other?

13

Choose a bigger k-mer

['ACGGCGCA', 'ACGGCGGC', 'CACGGCGC', 'CGCACGGC', 'CGGCGCAA', 'CGGCGCAC', 'CGGCGGCG', 'GACGGCGG', 'GCACGGCG', 'GCGCACGG', 'GCGGCGCA', 'GGCGCAC
G', 'GGCGGCGC']
['ACGGCGC', 'ACGGCGG', 'CACGGCG', 'CGCACGG', 'CGGCGCA', 'CGGCGGC', 'GACGGCG', 'GCACGGC', 'GCGCACG', 'GCGGCGC', 'GGCGCAA', 'GGCGCAC', 'GGCGGC
G']
[6, 1, 5, 12, 9, 4, 11, 8, 3, 7, 2, 0, 4, 10]
['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', 'GCACGGCG', 'CACGGCGC', 'ACGGCGC
A', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA
True

k = 8
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print kmers
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print nodes
G3 = Graph(nodes)
for code in kmers:
 G3.addEdge(code[:k-1],code[1:k],code)
path = G3.eulerianPath()
print path
path = G3.eulerEdges(path)
print path

seq = path[0][0:k]
for kmer in path[1:]:
 seq += kmer[k-1]
print seq
print seq == target

14

Advantage of larger k-mers

Making k larger (8) eliminates the second choice of loops

There are edges to choose from, but they all lead to the same path of vertices

15

Applied to the Hamiltonian Solution

['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', 'GCACGGCG', 'CACGGCGC', 'ACGGCGC
A', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA
True

k = 8
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G4 = Graph(kmers)
for vsrc in kmers:
 for vdst in kmers:
 if (vsrc[1:k] == vdst[0:k-1]):
 G4.addEdge(vsrc,vdst)
path = G4.hamiltonianPathV2()

print path
seq = path[0][0:k]
for kmer in path[1:]:
 seq += kmer[k-1]
print seq
print seq == target

16

Graph with 8-mers as vertices

There is only one Hamiltonian path

There are no repeated k-mers

17

Assembly in Reality

Problems with repeated k-mers

We can't distinguish between repeated k-mers

Recall we knew from our example that were {2:ACGGC, 3:CGGCG, 2:GCGCA, 2:GGCGC}

Assembling path without repeats:

[(0, 'ACGG'), (1, 'CACG'), (2, 'CGCA'), (3, 'CGGC'), (4, 'GACG'), (5, 'GCAA'), (6, 'GCAC'), (7, 'GCGC'), (8, 'GCGG'), (9, 'GGCG')]
[(7, 2), (1, 0), (2, 6), (9, 8), (4, 0), (3, 9), (0, 3), (9, 7), (6, 1), (2, 5), (8, 3)]

k = 5
target = "GACGGCGGCGCACGGCGCAA"
kmers = set([target[i:i+k] for i in xrange(len(target)-k+1)])
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
G5 = Graph(nodes)
for code in kmers:
 G5.addEdge(code[:k-1],code[1:k],code)

print sorted(G5.vertex.items())
print G5.edge

18

Resulting Graph with "distinct" 5-mers as edges

There is no single Euler Path

But there are is a set of paths that covers all edges ['GACGGCG', 'GGCGGC', 'GGCGCA', 'CGCAA', 'CGCACGG']

Extend a sequence from a node until you reach a node with an out-degree > in-degree

Save these partially assembled subsequences, call them contigs

Start new contigs following each out-going edge at these branching nodes

19

Next assemble contigs

Use a modified read-overlap graph to assemble these contigs

Add edge-weights that indicate the amount of overlap

Usually much smaller than the graph made from k-mers

Find Hamiltonian paths in this smaller graph

20

Discussion

No simple single algorithm for assembling a real genome sequences

Generally, an iterative task

Choose a k-mer size, ideally such that no or few k-mers are repeated

Assemble long paths (contigs) in the resulting graph

Use these contigs, if they overlap suffciently, to assemble longer sequences

Truely repetitive subsequences are a challenge

Leads to repeated k-mers and loops in graphs in the problem areas

Often we assemble the "shortest" version of a genome consistent with our k-mer set

Things we've ignored

Our k-mers are extracted from short read sequences that may contain errors

Our short read set could be missing entire segments from the actual genome

Our data actually supports 2 paths, one through the primary sequence, and a second through it again in reverse complement order.

21

