
Path Finding in Graphs

Problem Set #2 will be posted by tonight

1

From Last Time

Two graphs representing 5-mers from the sequence

"GACGGCGGCGCACGGCGCAA"

Hamiltonian Path:

Each k-mer is a vertex. Find a path that

passes through every vertex of this graph

exactly once.

Eulerian Path:

Each k-mer is an edge. Find a path that

passes through every edge of this graph

exactly once.

2

De Bruijn's Problem

Nicolaas de Bruijn

(1918-2012)

A dutch mathematician noted for his many

contributions in the fields of graph theory, number

theory, combinatorics and logic.

Minimal Superstring Problem:

Find the shortest sequence that contains all strings of length from

the alphabet as a substring.

Example: All strings of length 3 from the alphabet {'0','1'}.

He solved this problem by mapping it to a graph. Note, this particular

problem leads to cyclic sequence.

3

|Σ|
k

k

Σ

De Bruijn's Graphs

Minimal Superstrings can be constructed by finding a

Hamiltonian path of an k-dimensional De Bruijn

graph. Defined as a graph with nodes and edges

from nodes whose suffix matches a node's

prefix

Or, equivalently, a Eulerian cycle of a

(k−1)-dimensional De Bruijn graph. Here edges

represent the k-length substrings.

4

|Σ|
k

k − 1 k − 1

Solving Graph Problems on a Computer

Graph Representations

An example graph: An Adjacency Matrix:

 A B C D E

A 0 1 0 0 1

B 0 0 1 1 0

C 1 0 0 0 0

D 1 0 0 0 0

E 0 1 1 1 0

An n × n matrix where A is 1 if

there is an edge connecting the i

vertex to the j vertex and 0

otherwise.

Adjacency Lists:

Edge = [(0,1), (0,4),

 (1,2), (1,3),

 (2,0),

 (3,0),

 (4,1), (4,2), (4,3)]

An array or list of vertex pairs (i,j)

indicating an edge from the i vertex to

the j vertex.

5

ij

th

th

th

th

An adjacency list graph object

class BasicGraph:
 def __init__(self, vlist=[]):
 """ Initialize a Graph with an optional vertex list """
 self.index = {v:i for i,v in enumerate(vlist)} # looks up index given name
 self.vertex = {i:v for i,v in enumerate(vlist)} # looks up name given index
 self.edge = []
 self.edgelabel = []
 def addVertex(self, label):
 """ Add a labeled vertex to the graph """
 index = len(self.index)
 self.index[label] = index
 self.vertex[index] = label
 def addEdge(self, vsrc, vdst, label='', repeats=True):
 """ Add a directed edge to the graph, with an optional label.
 Repeated edges are distinct, unless repeats is set to False. """
 e = (self.index[vsrc], self.index[vdst])
 if (repeats) or (e not in self.edge):
 self.edge.append(e)
 self.edgelabel.append(label)

6

Usage example

Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings... and create a graph object using

them.

['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']

Vertex indices = {'0110': 6, '0111': 7, '0000': 0, '0001': 1, '0011': 3, '0010': 2, '0101': 5, '0100': 4, '1111': 15, '1110': 14, '1100': 12,
'1101': 13, '1010': 10, '1011': 11, '1001': 9, '1000': 8}

Index to Vertex = {0: '0000', 1: '0001', 2: '0010', 3: '0011', 4: '0100', 5: '0101', 6: '0110', 7: '0111', 8: '1000', 9: '1001', 10: '1010', 1
1: '1011', 12: '1100', 13: '1101', 14: '1110', 15: '1111'}

Edges = [(0, 0), (0, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (4, 9), (5, 10), (5, 11), (6, 12), (6, 13), (7, 14), (7, 15),
(8, 0), (8, 1), (9, 2), (9, 3), (10, 4), (10, 5), (11, 6), (11, 7), (12, 8), (12, 9), (13, 10), (13, 11), (14, 12), (14, 13), (15, 14), (15, 1
5)]

import itertools

binary = [''.join(t) for t in itertools.product('01', repeat=4)]

print binary

G1 = BasicGraph(binary)
for vsrc in binary:
 G1.addEdge(vsrc,vsrc[1:]+'0')
 G1.addEdge(vsrc,vsrc[1:]+'1')

print
print "Vertex indices = ", G1.index
print
print "Index to Vertex = ",G1.vertex
print
print "Edges = ", G1.edge

7

The resulting graph

8

The Hamiltonian Path Problem

Next, we need an algorithm to find a path in a graph that visits every node exactly once, if such a path exists.

How?

Approach:

Enumerate every possible path (all permutations of N vertices). Python's itertools.permutations() does this.

Verify that there is an edge connecting all N-1 pairs of adjacent vertices

9

All vertex permutations = every possible path

A simple graph with 4 vertices

(1, 2, 3, 4) (1, 2, 4, 3) (1, 3, 2, 4) (1, 3, 4, 2) (1, 4, 2, 3) (1, 4, 3, 2)
(2, 1, 3, 4) (2, 1, 4, 3) (2, 3, 1, 4) (2, 3, 4, 1) (2, 4, 1, 3) (2, 4, 3, 1)
(3, 1, 2, 4) (3, 1, 4, 2) (3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 1, 2) (3, 4, 2, 1)
(4, 1, 2, 3) (4, 1, 3, 2) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 1, 2) (4, 3, 2, 1)

import itertools

start = 0
for path in itertools.permutations([1,2,3,4]):
 if (path[0] != start):
 print
 start = path[0]
 print path,

Only some of these vertex permutions are actual paths in the graph

10

A Hamiltonian Path Algorithm

Test each vertex permutation to see if it is a valid path

Let's extend our BasicGraph into an EnhancedGraph class

Create the superstring graph and find a Hamiltonian Path

CPU times: user 31min 55s, sys: 9.21 s, total: 32min 4s
Wall time: 31min 54s
['0000', '0001', '0010', '0100', '1001', '0011', '0110', '1101', '1010', '0101', '1011', '0111', '1111', '1110', '1100', '1000']
0000100110101111000

import itertools

class EnhancedGraph(BasicGraph):
 def hamiltonianPath(self):
 """ A Brute-force method for finding a Hamiltonian Path.
 Basically, all possible N! paths are enumerated and checked
 for edges. Since edges can be reused there are no distictions
 made for *which* version of a repeated edge. """
 for path in itertools.permutations(sorted(self.index.values())):
 for i in xrange(len(path)-1):
 if ((path[i],path[i+1]) not in self.edge):
 break
 else:
 return [self.vertex[i] for i in path]
 return []

G1 = EnhancedGraph(binary)
for vsrc in binary:
 G1.addEdge(vsrc,vsrc[1:]+'0')
 G1.addEdge(vsrc,vsrc[1:]+'1')

WARNING: takes about 30 mins
%time path = G1.hamiltonianPath()
print path
superstring = path[0] + ''.join([path[i][3] for i in xrange(1,len(path))])
print superstring

11

Visualizing the result

12

Is this solution unique?

How about the path = "0000111101001011000"

• Our Hamiltonian path finder produces a single path, if one exists.

• How would you modify it to produce every valid Hamiltonian path?

• How long would that take?

One of De Bruijn's contributions is that there are:

paths leading to superstrings where .

In our case and k = 4, so there should be paths (ignoring those that are just different starting points on the

same cycle)

13

(σ!)σ
k−1

σk

σ = |Σ|

σ = 2 = 1622
3

24

Brute Force is slow!

There are N! possible paths for N vertices.

Our 16 vertices give 20,922,789,888,000 possible paths

There is a fairly simple Branch-and-Bound evaluation strategy

Grow the path using only valid edges

Use recursion to extend paths along graph edges

Trick is to maintain two lists:

The path so far, where each adjacent pair of vertices is connected by an edge

Unused vertices. When the unused list becomes empty we've found a path

14

A Branch-and-Bound Hamiltonian Path Finder

10000 loops, best of 3: 134 µs per loop
['0000', '0001', '0010', '0100', '1001', '0011', '0110', '1101', '1010', '0101', '1011', '0111', '1111', '1110', '1100', '1000']
0000100110101111000

import itertools

class ImprovedGraph(BasicGraph):
 def SearchTree(self, path, verticesLeft):
 """ A recursive Branch-and-Bound Hamiltonian Path search.
 Paths are extended one node at a time using only available
 edges from the graph. """
 if (len(verticesLeft) == 0):
 self.PathV2result = [self.vertex[i] for i in path]
 return True
 for v in verticesLeft:
 if (len(path) == 0) or ((path[-1],v) in self.edge):
 if self.SearchTree(path+[v], [r for r in verticesLeft if r != v]):
 return True
 return False
 def hamiltonianPath(self):
 """ A wrapper function for invoking the Branch-and-Bound
 Hamiltonian Path search. """
 self.PathV2result = []
 self.SearchTree([],sorted(self.index.values()))
 return self.PathV2result

G1 = ImprovedGraph(binary)
for vsrc in binary:
 G1.addEdge(vsrc,vsrc[1:]+'0')
 G1.addEdge(vsrc,vsrc[1:]+'1')
%timeit path = G1.hamiltonianPath()
path = G1.hamiltonianPath()
print path
superstring = path[0] + ''.join([path[i][3] for i in xrange(1,len(path))])
print superstring

That's a considerable speed up, but it still might be too slow for some graphs ...

15

Is there a better Hamiltonian Path Algorithm?

Better in what sense?

Better = number of steps to find a solution are polynomial in either the number of edges or vertices

Polynomial:

Exponential: or worse,

For example our Brute-Force algorithm was where V is the number of vertices in our graph, a problem variable

We can only practically solve only small problems if the algorithm for solving them takes a number of steps that grows

exponentially with a problem variable (i.e. the number of vertices), or else be satisfied with heuristic or approximate solutions

Can we prove that there is no algorithm that can find a Hamiltonian Path in a time that is polynomial in the number of vertices

edges in the graph?

No one has, and here is a million-dollar reward (http://www.claymath.org/millennium-problems) if you can!

If instead of a brute who just enumerates all possible answers we knew an oracle could just tell us the right answer (i.e. Nondeterministically)

It's easy to verify that an answer is correct in Polynomial time.

A lot of known similar problems will suddenly become solvable using your algorithm

16

variable
constant

constant
variable

variable
variable

O(V!) = O()V
V

http://www.claymath.org/millennium-problems

De Bruijn's Key Insight

De Bruijn realized that Minimal Superstrings were Eulerian cycles in a

(k−1)-dimensional "De Bruijn graph" (i.e. a graph where the desired strings are edges,

and vertices are the (k-1)-mer suffixes and prefixes of the string set).

He also knew that Euler had an ingenous way to solve this problem.

Recall Euler's desire to counstuct a tour where each bridge was crossed only once.

Start at any vertex v, and follow edges until you return to v

As long as there exists any vertex u that belongs to the current tour, but has

adjacent edges that are not part of the tour

Start a new trail from u

Following unused edges until returning to u

Join the new trail to the original tour

He didn't solve the general Hamiltonian Path problem, but he was able to remap the

Minimal Superstring problem to a simpler problem. Note every Minimal Superstring

Problem can be fomulated as a Hamiltonian Path in some graph, but the converse is

not true. Instead, he found a clever mapping of every Minimal Superstring Problem to

a Eulerian Path problem.

Let's demonstrate using the islands and bridges shown to the right

17

An algorithm for finding an Eulerian cycle

Our first path:

Take a side-trip, and merge it in:

18

Continue making side trips

Merging in a second side-trip:

Merging in a third side-trip:

19

Repeat until there are no more side trips to take

Merging in a final side-trip:

This algorithm requires a number of steps that is linear in the number of graph edges, . The number of edges in a general

graph is (the adjacency matrix tells us this).

20

O(E)

E = O()V 2

Converting to code
 # A new method for our Graph Class
 def eulerianPath(self):
 graph = [(src,dst) for src,dst in self.edge]
 currentVertex = self.verifyAndGetStart()
 path = [currentVertex]
 # "next" is the list index where vertices get inserted into our tour
 # it starts at the end (i.e. same as appending), but later "side-trips" will insert in the middle
 next = 1
 while len(graph) > 0:
 # follows a path until it ends
 for edge in graph:
 if (edge[0] == currentVertex):
 currentVertex = edge[1]
 graph.remove(edge)
 path.insert(next, currentVertex)
 next += 1
 break
 else:
 # Look for side-trips along the path
 for edge in graph:
 try:
 # insert our side-trip after the "u" vertex that is starts from
 next = path.index(edge[0]) + 1
 currentVertex = edge[0]
 break
 except ValueError:
 continue
 else:
 print "There is no path!"
 return False
 return path

Some issues with our code:

Where do we start our tour? (The mysterious VerifyandGetStart() method)

Where will it end?

How do we know that each side-trip will rejoin the graph at the same point where it began?

21

Euler's Theorems

A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

Theorem 1: A connected graph has a Eulerian Cycle if and only if each of its vertices are balanced.

Sketch of Proof:

In mid-tour of a valid Euler cycle, there must be a path onto an island and another path off

This is true until no paths exist

Thus every vertex must be balanced

Theorem 2: A connected graph has an Eulerian Path if and only if it contains at exacty two semi-balanced vertices and all

others are balanced.

Exceptions are allowed for the start and end of the tour

A single start vertex can have one more outgoing path than incoming paths

A single end vertex can have one more incoming path than outgoing paths

One of the semi-balanced vertices, with is the start of the tour

The othersemi-balanced vertex, with is the end of the tour

22

in(v) = out(v)

Semi-balanced vertex: in(v) − out(v) = 1|| ||

out(v) = in(v) + 1
in(v) = out(v) + 1

VerifyAndGetStart code

 # More new methods for the Graph Class
 def degrees(self):
 """ Returns two dictionaries with the inDegree and outDegree
 of each node from the graph. """
 inDegree = {}
 outDegree = {}
 for src, dst in self.edge:
 outDegree[src] = outDegree.get(src, 0) + 1
 inDegree[dst] = inDegree.get(dst, 0) + 1
 return inDegree, outDegree
 def verifyAndGetStart(self):
 inDegree, outDegree = self.degrees()
 start, end = 0, 0
 # node 0 will be the starting node is a Euler cycle is found
 for vert in self.vertex.iterkeys():
 ins = inDegree.get(vert,0)
 outs = outDegree.get(vert,0)
 if (ins == outs):
 continue
 elif (ins - outs == 1):
 end = vert
 elif (outs - ins == 1):
 start = vert
 else:
 start, end = -1, -1
 break
 if (start >= 0) and (end >= 0):
 return start
 else:
 return -1

23

A New Graph Class

import itertools

class AwesomeGraph(ImprovedGraph):
 def degrees(self):
 """ Returns two dictionaries with the inDegree and outDegree
 of each node from the graph. """
 inDegree = {}
 outDegree = {}
 for src, dst in self.edge:
 outDegree[src] = outDegree.get(src, 0) + 1
 inDegree[dst] = inDegree.get(dst, 0) + 1
 return inDegree, outDegree
 def verifyAndGetStart(self):
 inDegree, outDegree = self.degrees()
 start = 0
 end = 0
 for vert in self.vertex.iterkeys():
 ins = inDegree.get(vert,0)
 outs = outDegree.get(vert,0)
 if (ins == outs):
 continue
 elif (ins - outs == 1):
 end = vert
 elif (outs - ins == 1):
 start = vert
 else:
 start, end = -1, -1
 break
 if (start >= 0) and (end >= 0):
 return start
 else:
 return -1

Note: I also added an eulerEdges() method to the class. The Eulerian Path algorithm returns a list of vertices along the path,

which is consistent with the Hamiltonian Path algorithm. However, in our case, we are less interested in the series of vertices

visited than we are the series of edges. Thus, eulerEdges(), returns the edge labels along a path.

24

Finding Minimal Superstrings with an Euler Path

10000 loops, best of 3: 30.2 µs per loop
['000', '001', '010', '011', '100', '101', '110', '111']
[0, 0, 1, 3, 7, 7, 6, 5, 3, 6, 4, 1, 2, 5, 2, 4, 0]
['0000', '0001', '0011', '0111', '1111', '1110', '1101', '1011', '0110', '1100', '1001', '0010', '0101', '1010', '0100', '1000']

binary = [''.join(t) for t in itertools.product('01', repeat=4)]

nodes = sorted(set([code[:-1] for code in binary] + [code[1:] for code in binary]))
G2 = AwesomeGraph(nodes)
for code in binary:
 # Here I give each edge a label
 G2.addEdge(code[:-1],code[1:],code)

%timeit path = G2.eulerianPath()
print nodes
print path
print G2.eulerEdges(path)

Perhaps we should have called it WickedAwesomeGraph!

25

Our graph and its Euler path

In this case our the graph was fully balanced. So the Euler Path is a cycle.

Our tour starts arbitarily with the first vertex, '000'

000 → 000 → 001 → 011 → 111 → 111 → 110 → 101 → 011 → 110 → 100 → 001 → 010 → 101 → 010 → 100 → 000

superstring = "0000111101100101000"

26

Next Time

We return to genome assembly

27

