
Scaling Up Peptide Sequencing

More Errors

More Residues

1



From Last Time

AminoAcid = {
    'A': 'Alanine', 'C': 'Cysteine', 'D': 'Aspartic acid', 'E': 'Glutamic acid',
    'F': 'Phenylalanine', 'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine',
    'K': 'Lysine', 'L': 'Leucine', 'M': 'Methionine', 'N': 'Asparagine',
    'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine',
    'T': 'Theronine', 'V': 'Valine', 'W': 'Tryptophan', 'Y': 'Tyrosine',
    '*': 'STOP'
}
 
AminoAbbrv = {
    'A': 'Ala', 'C': 'Cys', 'D': 'Asp', 'E': 'Glu',
    'F': 'Phe', 'G': 'Gly', 'H': 'His', 'I': 'Ile',
    'K': 'Lys', 'L': 'Leu', 'M': 'Met', 'N': 'Asn',
    'P': 'Pro', 'Q': 'Gln', 'R': 'Arg', 'S': 'Ser',
    'T': 'Thr', 'V': 'Val', 'W': 'Trp', 'Y': 'Tyr',
    '*': 'STP'    
}
 
# Now it's time to use this dictionary!
Daltons = { 
    'A':  71, 'C': 103, 'D': 115, 'E': 129,
    'F': 147, 'G':  57, 'H': 137, 'I': 113,
    'K': 128, 'L': 113, 'M': 131, 'N': 114,
    'P':  97, 'Q': 128, 'R': 156, 'S':  87,
    'T': 101, 'V':  99, 'W': 186, 'Y': 163 
}
 
def TheoreticalSpectrum(peptide):
    # Generate every possible fragment of a peptide
    spectrum = set()
    for fragLength in xrange(1,len(peptide)+1):
        for start in xrange(0,len(peptide)-fragLength+1):
            seq = peptide[start:start+fragLength]
            spectrum.add(sum([Daltons[res] for res in seq]))
    return sorted(spectrum)

2



Recall our golf tourney approach

import itertools
 
def LeaderboardFindPeptide(noisySpectrum, cutThreshold=0.05):
    # Golf Tournament Heuristic
    spectrum = set(noisySpectrum)
    target = max(noisySpectrum)
    players = [''.join(peptide) for peptide in itertools.product(Daltons.keys(), repeat=2)]
    round = 1
    currentLeader = [0.0, '']
    while True:
        print "%8d Players in round %d [%5.4f]" % (len(players), round, currentLeader[0])
        leaderboard = []
        for prefix in players:
            testSpectrum = set(TheoreticalSpectrum(prefix))
            totalWeight = max(testSpectrum)
            score = len(spectrum & testSpectrum)/float(len(spectrum | testSpectrum))
            if (score > currentLeader[0]):
                currentLeader = [score, prefix]
            elif (score == currentLeader[0]):
                currentLeader += [prefix]
            if (totalWeight < target):
                leaderboard.append((score, prefix))
        remaining = len(leaderboard)
        if (remaining == 0):
            print "Done, no sequences can be extended"
            break
        leaderboard.sort(reverse=True)
        # Prune the larger of the top 5% or the top 5 players
        cut = leaderboard[max(min(5,remaining-1),int(remaining*cutThreshold))][0]
        players = [p+r for s, p in leaderboard if s >= cut for r in Daltons.iterkeys()]
        round += 1
    return currentLeader

3



Let's try a Noisier Spectrum

VKLFPWFNQY 
51 [97, 99, 113, 114, 128, 147, 163, 186, 227, 241, 242, 244, 260, 261, 283, 291, 333, 340, 357, 388, 389, 405, 430, 447, 485, 487, 543, 544, 552, 575, 577, 584, 671, 672, 690, 691, 738, 770, 804, 818, 
819, 835, 917, 932, 982, 1031, 1060, 1095, 1159, 1223, 1322] 

Missing Masses = [1159, 114, 691, 186, 819, 357, 291, 543, 1223, 147, 671, 97, 388, 552, 447, 770, 672, 261, 738, 487, 577, 485, 932, 1031, 690, 389, 340, 575, 113, 260] 

False Masses =  [356, 160, 572, 879, 244] 
25 [99, 128, 160, 163, 227, 241, 242, 244, 283, 333, 356, 405, 430, 544, 572, 584, 804, 818, 835, 879, 917, 982, 1060, 1095, 1322] 

# generate a synthetic experimental spectrum with 60% Error
import random
random.seed(1961)
 
TyrocidineB1 = "VKLFPWFNQY"
print TyrocidineB1
spectrum = TheoreticalSpectrum(TyrocidineB1)
print len(spectrum), spectrum
 
# Pick around ~60% at random to remove
missingMass = random.sample(spectrum[:-1], 30)
print "\nMissing Masses = %s\n" % missingMass
 
# Add back another ~10% of false, but actual, peptide masses
falseMass = []
for i in xrange(5):
    fragment = ''.join(random.sample(Daltons.keys(), random.randint(2,len(TyrocidineB1)-2)))
    weight = sum([Daltons[residue] for residue in fragment])
    falseMass.append(weight)
print "False Masses = ", falseMass
 
experimentalSpectrum = sorted(set([mass for mass in spectrum if mass not in missingMass] + falseMass))
 
print len(experimentalSpectrum), experimentalSpectrum

4



Find peptides via the leaderboard approach

     400 Players in round 1 [0.0000] 
     440 Players in round 2 [0.1200] 
     600 Players in round 3 [0.1481] 
    1480 Players in round 4 [0.2069] 
    1840 Players in round 5 [0.2121] 
    2320 Players in round 6 [0.2222] 
    5200 Players in round 7 [0.2619] 
    5360 Players in round 8 [0.2826] 
    8640 Players in round 9 [0.2826] 
    9040 Players in round 10 [0.3220] 
    8320 Players in round 11 [0.3220] 
     480 Players in round 12 [0.3220] 
Done, no sequences can be extended 
CPU times: user 16 s, sys: 130 ms, total: 16.2 s 
Wall time: 16.1 s 
[0.3220338983050847, 'VQLDEWFNQY', 'VQLDEWFNKY', 'VQIDEWFNQY', 'VQIDEWFNKY', 'VKLDEWFNQY', 'VKLDEWFNKY', 'VKIDEWFNQY', 'VKIDEWFNKY'] 
8 Candidate residues with 0.322033898305 matches 
VKLFPWFNQY False 

spectrum = TheoreticalSpectrum(TyrocidineB1)
experimentalSpectrum = [mass for mass in spectrum if mass not in missingMass] + falseMass
%time winners = LeaderboardFindPeptide(experimentalSpectrum)
print winners
print len(winners) - 1, "Candidate residues with", winners[0], 'matches'
print TyrocidineB1, TyrocidineB1 in winners

5



Let's try the example in the book

The example on page 66 of the book gives a different answer using our method, because the book does not normalize it's similarity metric. While 'VKLFPADFNQY' has one

more match, 'VKLFPWFNQY' it also adds 10 unmatched peaks.

     400 Players in round 1 [0.0000] 
     760 Players in round 2 [0.0517] 
    2680 Players in round 3 [0.1034] 
    3800 Players in round 4 [0.1724] 
    6000 Players in round 5 [0.2586] 
    7320 Players in round 6 [0.3390] 
    9160 Players in round 7 [0.4237] 
   11280 Players in round 8 [0.5082] 
   11440 Players in round 9 [0.5968] 
    7840 Players in round 10 [0.7302] 
     800 Players in round 11 [0.7302] 
Done, no sequences can be extended 
CPU times: user 15.8 s, sys: 116 ms, total: 15.9 s 
Wall time: 15.8 s 
[0.7301587301587301, 'YQNFWPFLQV', 'YQNFWPFLKV', 'YQNFWPFIQV', 'YQNFWPFIKV', 'YKNFWPFLQV', 'YKNFWPFLKV', 'YKNFWPFIQV', 'YKNFWPFIKV', 'VQLFPWFNQY', 'VQLFPWFNKY', 'VQIFPWFNQY', 'VQIFPWFNKY', 'VKLFPWFNQ
Y', 'VKLFPWFNKY', 'VKIFPWFNQY', 'VKIFPWFNKY'] 
16 Candidate residues with 0.730158730159 matches 
VKLFPWFNQY True 

VKLFPADFNQY Matches = 47, Union = 73 
VKLFPWFNQY Matches = 46, Union = 63 

missingBook = [357,430,543,671,747,778,1031,1061,1225]
falseBook = [115,256,309,330,347,385,435,599,608,653,717,827]
spectrum = TheoreticalSpectrum(TyrocidineB1)
experimentalSpectrum = sorted(set([mass for mass in spectrum if mass not in missingBook] + falseBook))
%time winners = LeaderboardFindPeptide(experimentalSpectrum)
print winners
print len(winners) - 1, "Candidate residues with", winners[0], 'matches'
print TyrocidineB1, TyrocidineB1 in winners
print
x = set(TheoreticalSpectrum('VKLFPADFNQY'))
y = set(TheoreticalSpectrum('VKLFPWFNQY'))
z = set(experimentalSpectrum)
print "%s Matches = %d, Union = %d" % ('VKLFPADFNQY', len(x & z), len(x | z))
print "%s Matches = %d, Union = %d" % ('VKLFPWFNQY', len(y & z), len(y | z))

6



A New Idea

Maybe we are still not using our spectrum to its fullest extent

Is there some information about missing masses that we can extract?

7



Information in the Mass Differences

Recall the theoretical spectrum of "PLAY" is [71, 97, 113, 163, 184, 210, 234, 281, 347, 444]

Suppose we remove masses 71 and 163, can we get them back?

Let's generate a table of all pair-wise differences between the observed peaks

Notice that interesting numbers, (71, 97, 113, 137, 163, 234) are repeated in the table

97 113 184 210 234 281 347 444

97 16 87 113 137 184 250 347

113 71 97 121 168 234 331

184 26 50 97 163 260

210 24 71 137 234

234 47 113 210

281 66 163

347 97

Why does this work?

This table of differences is called a Spectral Convolution

8



Spectral Convolution

Spectral Convolution gives us an approach for recovering some missing masses

Given a noisy experimental spectrum

1. Compute its spectral convolution

2. Add frequent masses above some threshold to the spectrum

3. Infer the peptide sequence

[97, 113, 114, 147, 186, 260, 261, 291, 340, 357, 388, 389, 447, 485, 487, 543, 552, 575, 577, 671, 672, 690, 691, 738, 770, 819, 932, 1031, 1159, 1223] 
61 appears 2 times 64 appears 2 times 78 appears 2 times 81 appears 2 times  
82 appears 2 times 113 appears 3 times* 114 appears 3 times* 142 appears 2 times  
143 appears 2 times 147 appears 2 times* 164 appears 2 times 178 appears 3 times  
188 appears 2 times 216 appears 2 times 228 appears 2 times 234 appears 2 times  
251 appears 2 times 260 appears 2 times* 277 appears 2 times 291 appears 2 times*  
302 appears 2 times 331 appears 2 times 340 appears 2 times* 345 appears 2 times  
485 appears 2 times* 487 appears 2 times* 523 appears 2 times 552 appears 2 times*  
577 appears 3 times* 591 appears 2 times 655 appears 2 times 675 appears 2 times  
676 appears 2 times 690 appears 3 times* 719 appears 2 times 738 appears 2 times*  
819 appears 2 times* 854 appears 2 times 932 appears 2 times*  

def SpectralConvolution(spectrum):
    delta = {}
    for i in xrange(len(spectrum)-1):
        for j in xrange(i+1,len(spectrum)):
            diff = abs(spectrum[j] - spectrum[i])
            delta[diff] = delta.get(diff, 0) + 1
    return delta
 
spectrum = TheoreticalSpectrum(TyrocidineB1)
print sorted(missingMass)
experimentalSpectrum = sorted(set([mass for mass in spectrum if mass not in missingMass] + falseMass))
specConv = SpectralConvolution(sorted(experimentalSpectrum))
N = 0
for delta, count in sorted(specConv.iteritems()):
    if (count >= 2) and (delta not in experimentalSpectrum) and (delta > min(Daltons.values())):
        print delta, "appears", count, "times*\t" if delta in missingMass else "times\t",
        experimentalSpectrum.append(delta)
        N += 1
        if (N % 4 == 0):
            print
print

9



Noisey spectrum enhanced by spectral convolution

     400 Players in round 1 [0.0000] 
     760 Players in round 2 [0.0517] 
    2680 Players in round 3 [0.1034] 
    3800 Players in round 4 [0.1724] 
    6000 Players in round 5 [0.2586] 
    7320 Players in round 6 [0.3390] 
    9160 Players in round 7 [0.4237] 
   11280 Players in round 8 [0.5082] 
   11440 Players in round 9 [0.5968] 
    7840 Players in round 10 [0.7302] 
     800 Players in round 11 [0.7302] 
Done, no sequences can be extended 
[0.7301587301587301, 'YQNFWPFLQV', 'YQNFWPFLKV', 'YQNFWPFIQV', 'YQNFWPFIKV', 'YKNFWPFLQV', 'YKNFWPFLKV', 'YKNFWPFIQV', 'YKNFWPFIKV', 'VQLFPWFNQY', 'VQLFPWFNKY', 'VQIFPWFNQY', 'VQIFPWFNKY', 'VKLFPWFNQ
Y', 'VKLFPWFNKY', 'VKIFPWFNQY', 'VKIFPWFNKY'] 
16 Candidate residues with 0.730158730159 matches 
VKLFPWFNQY True 

winners = LeaderboardFindPeptide(experimentalSpectrum)
print winners
print len(winners) - 1, "Candidate residues with", winners[0], 'matches'
print TyrocidineB1, TyrocidineB1 in winners

10



Some sanity checks

VKLFPAYVNQY Matches = 38, Union = 86 
VKLFPWFNQY Matches = 35, Union = 80 

[71, 99, 163, 234, 262, 333] 

[99, 128, 160, 163, 227, 241, 242, 244, 283, 333, 356, 405, 430, 544, 572, 584, 804, 818, 835, 879, 917, 982, 1060, 1095, 1322, 61, 64, 78, 81, 82, 113, 114, 142, 143, 147, 164, 178, 188, 216, 228, 23
4, 251, 260, 277, 291, 302, 331, 340, 345, 485, 487, 523, 552, 577, 591, 655, 675, 676, 690, 719, 738, 819, 854, 932] 

[97, 99, 113, 114, 128, 147, 163, 186, 227, 241, 242, 244, 260, 261, 283, 291, 333, 340, 357, 388, 389, 405, 430, 447, 485, 487, 543, 544, 552, 575, 577, 584, 671, 672, 690, 691, 738, 770, 804, 818, 81
9, 835, 917, 932, 982, 1031, 1060, 1095, 1159, 1223, 1322] 

x = set(TheoreticalSpectrum('VKLFPAYVNQY'))
y = set(TheoreticalSpectrum('VKLFPWFNQY'))
z = set(experimentalSpectrum)
print "%s Matches = %d, Union = %d" % ('VKLFPAYVNQY', len(x & z), len(x | z))
print "%s Matches = %d, Union = %d" % ('VKLFPWFNQY', len(y & z), len(y | z))
print
print TheoreticalSpectrum('AYV')
print
print experimentalSpectrum
print
print TheoreticalSpectrum(TyrocidineB1)
 

11



A More Realistic Example

For long sequences the underlying exponential growth becomes more evident.

Insulin = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
spectrum = TheoreticalSpectrum(Insulin)
print len(spectrum)
missingMass = random.sample(spectrum[:-1], 100)
experimentalSpectrum = sorted([mass for mass in spectrum if mass not in missingMass])
print len(experimentalSpectrum)
 
# See slide for the following *hack*
del Daltons['I']
del Daltons['K']
 
%time winners = LeaderboardFindPeptide(experimentalSpectrum, cutThreshold=0.01)
print winners
print len(winners) - 1, "Candidate residues with", winners[0], 'matches'
print Insulin, Insulin in winners
 
# See slide for the following *hack*
Daltons['I'] = Daltons['L']
Daltons['K'] = Daltons['Q']

Some of the reasons that things blow up:

1. The search space got large fast

2. There must be a LOT of ties

3. Algorithm tends to keep all (N-k+1) subpeptides as k approaches the sequence's size (k is related to our round)

4. The I/L and K/Q ambiguities lead to exponential number of ties, hence the hack

5. Reversed sequences are doubling our leaderboard size

There are bandaids to fix problems 3 and 4, but the problem remains

12



How are peptide sequences identified?

13


First


Previous


Notebook


Next



Peptide Identification Problem

Goal: Find a peptide from the database with maximal match between an experimental and theoretical spectrum.

Input:

S: experimental spectrum

database of peptides

Δ: set of possible ion types

m: parent mass

Output:

A peptide of mass m from the database whose theoretical spectrum matches the experimental S spectrum the best

14



Mass Spec Database Searches

How do you get a database?

1. Compute theoretical spectrums for all peptides from length N to M

2. More commonly, store theoretical spectrums for known peptide sequences

Database searches are very effective in identfying known or closely related proteins.

Experimental spectrums are compared with spectra of database peptides to find the best fit (ex. SEQUEST, Yates et al., 1995)

But reliable algorithms for identification of new proteins is a more difficult problem.

Essence of the Database Search

We need a notion of spectral similarity that correlates well with the sequence similarity.

If peptides are a few mutations/modifications apart, the spectral similarity between their spectra should be high.

Simplest measure: Shared Peak Counts (SPC)

Very similar to the scoring function used in our De novo approach.

15



SPC Diminishes Quickly

[97, 101, 113, 114, 129, 156, 227, 230, 242, 253, 257, 343, 354, 356, 386, 457, 483, 499, 596, 613, 710] 
[97, 101, 114, 129, 156, 163, 230, 253, 257, 277, 292, 354, 386, 393, 406, 483, 507, 549, 646, 663, 760] 
[97, 101, 114, 129, 163, 186, 230, 277, 283, 287, 292, 384, 393, 406, 416, 507, 513, 579, 676, 693, 790] 
set([97, 354, 483, 101, 230, 257, 129, 386, 114, 156, 253]) 
set([97, 114, 101, 230, 129]) 

print TheoreticalSpectrum('PRTEIN')
print TheoreticalSpectrum('PRTEYN')
print TheoreticalSpectrum('PWTEYN')
 
print set(TheoreticalSpectrum('PRTEIN')) & set(TheoreticalSpectrum('PRTEYN'))
print set(TheoreticalSpectrum('PRTEIN')) & set(TheoreticalSpectrum('PWTEYN'))

16



Spectral Convolution to the Rescue!

Difference matrix of spectrums. The elements with multiplicity > 2 are shown in colored boxes. The black outlined boxes enclose elements with multiplicity = 2. The SPC only

accounts for the zero entries shown as red circles.

17



Spectral Convolution to the Rescue!

Difference matrix of spectrums. The elements with multiplicity > 2 are shown in colored boxes. The black outlined boxes enclose elements with multiplicity = 2. The SPC only

accounts for the zero entries shown as red circles.

18



Summary

How do protein structures actually get resolved?

Database searches for protein Mass Specs is generally where most techniques begin. This works paricularly well when it agrees with an already known or very similar

protein. However, one can also look for tale-tale fingerprints of peaks from known sub-peptides. For example it is fairly easy to build a library of all 20  = 64 million

peptides of length 6 and look for eaches 15 associated peaks. Once several hexapeptides ar found you can assemble from there. There are also larger subpeptides 10 to 20 in

length that appear frequently.

Another common method is to, rather than brake a protein into every possible subpeptide, use an enzyme to cleave it between particular residue pairs. For example Trypsin

will cleave peptide chains immediately after the amino acids lysine and arginine, except when either is followed by proline. This leads to several large fragments, whose

mass can be accurately measured using a Mass Spec. This technique is called Peptide Mass Fingerprinting (PMF).

19

6


