
Determining a Peptide's Sequence

From last time we learned that we can't always use DNA

to resolve peptide/protein sequences

What else can we do?

Extract and purify a pure sample of the

peptide/protein

Try to resolve the peptide sequence by analyzing

this sample

Today's approach

Randomly fracture the peptide

Assemble an answer from the peices

1

Molecular Weights are the Puzzle Peices

2

Structure of a Peptide Chain

Peptides are chains of amino acids that are joined by peptide bonds

These bonds reduce the weight of each amino acid by one H 0 molecule

The result is called a residue

A Mass Spectrograph can precisely measure the molecular weight (and charge and abundance) of

any peptide chain

Since the molecular weight of each of the possible 20 residues is known precisely, one can ask the

question, which combination of residues would give a particular weight?

The problem is ambiguous for the entire molecule

Consider all permulations of 'PIT':

 'PIT', 'PTI', 'ITP', 'IPT', 'TPI', and 'TIP' all weigh the same

But they differ in their 2-peptide fragments:

 'PIT' breaks into 'PI' and 'IT', while
 'PTI' breaks into 'PT' and 'TI'

3

2

An Simplified Peptide Weight table

The actual molecular weight of an amino acid is a real number. This acounts for the relative abundances of atomic isotopes

Today, we will use a simplified version that assumes only integer molecular weights

Example:

Molecular weight of Glycine Amino Acid

Molecular wieght of Glycine Residue (Minus the lost forming the peptide bond)

We can repeat this for all 20 Amino Acids to get a integer molecular weight table, which I call Daltons

4

W(N) = 12 × 2 + 5 × 1 + 14 + 16 × 2 = 75C2H5 O2

OH2

W(N − O) = 57C2H5 O2 H2

Table Definitions

AminoAcid = {
 'A': 'Alanine', 'C': 'Cysteine', 'D': 'Aspartic acid', 'E': 'Glutamic acid',
 'F': 'Phenylalanine', 'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine',
 'K': 'Lysine', 'L': 'Leucine', 'M': 'Methionine', 'N': 'Asparagine',
 'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine',
 'T': 'Theronine', 'V': 'Valine', 'W': 'Tryptophan', 'Y': 'Tyrosine',
 '*': 'STOP'
}

AminoAbbrv = {
 'A': 'Ala', 'C': 'Cys', 'D': 'Asp', 'E': 'Glu',
 'F': 'Phe', 'G': 'Gly', 'H': 'His', 'I': 'Ile',
 'K': 'Lys', 'L': 'Leu', 'M': 'Met', 'N': 'Asn',
 'P': 'Pro', 'Q': 'Gln', 'R': 'Arg', 'S': 'Ser',
 'T': 'Thr', 'V': 'Val', 'W': 'Trp', 'Y': 'Tyr',
 '*': 'STP'
}

Here's a new dictionary!
Daltons = {
 'A': 71, 'C': 103, 'D': 115, 'E': 129,
 'F': 147, 'G': 57, 'H': 137, 'I': 113,
 'K': 128, 'L': 113, 'M': 131, 'N': 114,
 'P': 97, 'Q': 128, 'R': 156, 'S': 87,
 'T': 101, 'V': 99, 'W': 186, 'Y': 163
}

5

Some Issues with our Table

We can't distinguish between Leucine (L) and Isoleucine (I). They both weight 113 d

Nor can we distinguish Lysine (K) and Glutamine (Q), which weigh 128 d

For long peptide chains >50, our errors can build up

In reality, peptides can loose or gain one or more small molecules from their side chains and

fractured peptide bonds

Gain Hydrogen ions (H, +1 Dalton)

Lose Water (H O, -18 Daltons)

Lose Ammonia (NH , -17 Daltons)

This leads to measurements that vary around the ideal sums we assume

Regardless of these caveats, let's keep going

6

2

3

The total molecular weight of our target

1322

TyrocidineB1 = "VKLFPWFNQY"

The weight of Tyrocidine B1
print sum([Daltons[res] for res in TyrocidineB1])

Generally, we will assume that the peptide's total molecular weight is known

We will use it as a terminating condition for many of our algorithms that attempt to reconstruct the measured set of weights

7

Ideally, what Weights should we get?

We will make the optimistic assumption that we will fracture our given petide chain into all of its constituent parts

For a 10 peptide chain

10 single peptides

9, 2-peptide chains

8, 3-peptide chains

7, 4-peptide chains

6, 5-peptide chains

5, 6-peptide chains

4, 7-peptide chains

3, 8-peptide chains

2, 9-peptide chains

1, 10-peptide chain

This gives an upper bound of molecular weights

In reality both the peptide chains and their weights may not be unique

The collection of all possible sub-peptide molecular weights from a peptide is called the peptide's Theoretical Spectrum

8

() = 55
11

2

Code for computing a Theoretical Spectrum

VKLFPWFNQY
51
[97, 99, 113, 114, 128, 147, 163, 186, 227, 241, 242, 244, 260, 261, 283, 291, 333, 340, 357, 388, 389, 405, 430, 447, 485, 487, 543, 544, 552, 575, 57
4, 671, 672, 690, 691, 738, 770, 804, 818, 819, 835, 917, 932, 982, 1031, 1060, 1095, 1159, 1223, 1322]

def TheoreticalSpectrum(peptide):
 # Generate every possible fragment of a peptide
 spectrum = set()
 for fragLength in xrange(1,len(peptide)+1):
 for start in xrange(0,len(peptide)-fragLength+1):
 seq = peptide[start:start+fragLength]
 spectrum.add(sum([Daltons[res] for res in seq]))
 return sorted(spectrum)

print TyrocidineB1
spectrum = TheoreticalSpectrum(TyrocidineB1)
print len(spectrum)
print spectrum

Why are we using a set rather than a list? Notice that we end up returning a list.

9

Fragments and their Spectrums

VKLFPWFNQY
55
 P: 97 V: 99 L: 113 N: 114 K: 128
 Q: 128* F: 147 F: 147* Y: 163 W: 186
 VK: 227 KL: 241 NQ: 242 FP: 244 LF: 260
 FN: 261 PW: 283 QY: 291 WF: 333 VKL: 340
 LFP: 357 KLF: 388 FNQ: 389 NQY: 405 FPW: 430
 PWF: 430* WFN: 447 KLFP: 485 VKLF: 487 LFPW: 543
 PWFN: 544 FNQY: 552 WFNQ: 575 FPWF: 577 VKLFP: 584
 KLFPW: 671 PWFNQ: 672 LFPWF: 690 FPWFN: 691 WFNQY: 738
 VKLFPW: 770 LFPWFN: 804 KLFPWF: 818 FPWFNQ: 819 PWFNQY: 835
 VKLFPWF: 917 KLFPWFN: 932 LFPWFNQ: 932* FPWFNQY: 982 VKLFPWFN: 1031
 KLFPWFNQ: 1060 LFPWFNQY: 1095 VKLFPWFNQ: 1159 KLFPWFNQY: 1223 VKLFPWFNQY: 1322

peptide = TyrocidineB1
fragList = []
for fragLength in xrange(1,len(peptide)+1):
 for start in xrange(0,len(peptide)-fragLength+1):
 seq = peptide[start:start+fragLength]
 fragList.append((sum([Daltons[res] for res in seq]), seq))

print peptide
print len(fragList)
N = 0
lastWeight = 0
for weight, frag in sorted(fragList):
 print "%12s: %4d%s" % (frag, weight, "*" if (weight == lastWeight) else " "),
 N += 1
 if (N % 5 == 0):
 print
 lastWeight = weight

10

Let's try a smaller example

10 [71, 97, 113, 163, 184, 210, 234, 281, 347, 444]
10
 A: 71 P: 97 L: 113 Y: 163 LA: 184
 PL: 210 AY: 234 PLA: 281 LAY: 347 PLAY: 444

peptide = 'PLAY'
spectrum = TheoreticalSpectrum(peptide)
print len(spectrum), spectrum

fragList = []
for fragLength in xrange(1,len(peptide)+1):
 for start in xrange(0,len(peptide)-fragLength+1):
 seq = peptide[start:start+fragLength]
 fragList.append((sum([Daltons[res] for res in seq]), seq))

print len(fragList)
N = 0
lastWeight = 0
for weight, frag in sorted(fragList):
 print "%12s: %4d%s" % (frag, weight, "*" if (weight == lastWeight) else " "),
 N += 1
 if (N % 5 == 0):
 print
 lastWeight = weight

11

Can we Invert the Process of creating a Spectrum?

In essence, the problem of inferring a peptide chain from the set of mass values reported by a

Mass Spectrometer is the inverse of the code we just wrote

Easy Problem: Peptide Sequence → Spectrum

Hard Problem: Peptide Sequence ← Spectrum

Why is computing a spectrum from a peptide sequence easy? ?

Why is computing a peptide sequence from a specturm hard?

12

O()N
2

O(?)

How might you approach this problem?

Can you think of a Brute-Force way of solving this problem?

Here's one:

1. For every peptide sequence with the target peptide's molecular weight

2. Compute the sequence's Theoretical Spectrum

3. If it matches the one given, report this peptide as a possible solution

Which step in this algorithm is the hard part?

13

A Brute-Force Attempt

CPU times: user 3.57 s, sys: 3 ms, total: 3.58 s
Wall time: 3.57 s
3687 candidates True
CPU times: user 73 ms, sys: 0 ns, total: 73 ms
Wall time: 73.2 ms
['PIAY', 'PLAY', 'YAIP', 'YALP'] True

def PossiblePeptide(spectrum, prefix=''):
 """ A brute force method of generating all peptide sequences that add up to our target weight from the given spectrum """
 global peptideList
 if (len(prefix) == 0):
 peptideList = []
 current = sum([Daltons[res] for res in prefix])
 target = max(spectrum) # our target
 if (current == target):
 peptideList.append(prefix)
 elif (current < target):
 for residue in Daltons.iterkeys():
 PossiblePeptide(spectrum, prefix+residue)

def TestPeptides(candidateList, target):
 filteredList = []
 for peptide in candidateList:
 candidateSpectrum = TheoreticalSpectrum(peptide)
 if (candidateSpectrum == target):
 filteredList.append(peptide)
 return filteredList

spectrum = TheoreticalSpectrum('PLAY')
%time PossiblePeptide(spectrum)
print len(peptideList), "candidates", "PLAY" in peptideList
%time matches = TestPeptides(peptideList, spectrum)
print matches, "PLAY" in matches

14

Impressions?

Not so bad for a first attempt, but how will it perform for longer peptides?

We are getting the expected answer as well as answers with the indistinguishable amino acids substituted

We are also getting the sequence reversed? Is this a surprise?

We could code around this, but for today we'll just include the reversed peptide chain as a possible answer

Could we do better?

The brute force method does not make good use of the spectrum it is given

It only ever considers the largest value from this table

How might we make use of the other values?

15

Improving on Brute Force

We could extend our prefix using only residues that appear in our spectrum

The weight of every new prefix that we consider should also be in our spectrum

Actual fragments: P L A Y PL LA AY PLA LAY PLAY

Growing and Checking prefixes:

 A I L P Y

 AI = LA IA = LA LA = LA PI = PL YA = AY
 AIP = PLA IAP = PLA LAP = PLA PIA = PLA YAI = LAY
 AIPY = PLAY IAPY = PLAY LAPY = PLAY PIAY = PLAY YAIP = PLAY
 AIY = LAY IAY = LAY LAY = LAY YAL = LAY
 AIYP = PLAY IAYP = PLAY LAYP = PLAY YALP = PLAY

 AL = LA IP = PL LP = PL PL = PL
 ALP = PLA IPA = PLA LPA = PLA PLA = PLA
 ALPY = PLAY IPAY = PLAY LPAY = PLAY PLAY = PLAY
 ALY = LAY
 ALYP = PLAY

 AY = AY
 AYI = LAY
 AYIP = PLAY
 AYL = LAY
 AYLP = PLAY

16

Only a Small Change to the Code

CPU times: user 1 ms, sys: 0 ns, total: 1 ms
Wall time: 761 µs
16 True
['AIPY', 'AIYP', 'ALPY', 'ALYP', 'AYIP', 'AYLP', 'IAPY', 'IAYP', 'IPAY', 'LAPY', 'LAYP', 'LPAY', 'PIAY', 'PLAY', 'YAIP', 'YALP']
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 404 µs
['PIAY', 'PLAY', 'YAIP', 'YALP'] True

def ImprovedPossiblePeptide(spectrum, prefix=''):
 global peptideList
 if (len(prefix) == 0):
 peptideList = []
 current = sum([Daltons[res] for res in prefix])
 target = max(spectrum)
 if (current == target):
 peptideList.append(prefix)
 elif (current < target):
 for residue in Daltons.iterkeys():
 # make sure that this residue appears in our spectrum
 if (Daltons[residue] not in spectrum):
 continue
 # make sure that adding this residue to the sequence we have so far appears in our spectrum
 extend = prefix + residue
 if (sum([Daltons[res] for res in extend]) not in spectrum):
 continue
 ImprovedPossiblePeptide(spectrum, extend)

spectrum = TheoreticalSpectrum('PLAY')
%time ImprovedPossiblePeptide(spectrum)
print len(peptideList), "PLAY" in peptideList
print peptideList
%time matches = TestPeptides(peptideList, spectrum)
print matches, "PLAY" in matches

17

Impact of a small change

Provides a HUGE performace difference

Yet another example of Branch-and-Bound

We improved both the enumeration and verification phases, but the difference was much more significant in the enumeration

step

AIPY AIYP ALPY ALYP AYIP AYLP IAPY IAYP IPAY LAPY LAYP LPAY PIAY PLAY YAIP YALP

for peptide in peptideList:
 print peptide,

[71, 97, 113, 163, 184, 210, 234, 281, 347, 444]

TheoreticalSpectrum('PLAY')

[71, 97, 113, 163, 168, 184, 260, 281, 331, 444]

TheoreticalSpectrum('LAPY')

168
331
260

print sum([Daltons[res] for res in 'AP']) # Suffix of 'LAP' prefix
print sum([Daltons[res] for res in 'APY']) # Suffix of 'LAPY'
print sum([Daltons[res] for res in 'PY']) # Suffix of 'LAPY'

There are still differences in the spectrums, yet every prefix was in the spectrum when we added it. What are we missing?

Suffixes!

18

We can do Even Better

All suffixes of each prefix that we consider should also be in our spectrum

CPU times: user 3 ms, sys: 0 ns, total: 3 ms
Wall time: 2.44 ms
4 ['PIAY', 'PLAY', 'YAIP', 'YALP'] True
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 147 µs
['PIAY', 'PLAY', 'YAIP', 'YALP'] True

def UltimatePossiblePeptide(spectrum, prefix=''):
 global peptideList
 if (len(prefix) == 0):
 peptideList = []
 current = sum([Daltons[res] for res in prefix])
 target = max(spectrum)
 if (current == target):
 peptideList.append(prefix)
 elif (current < target):
 for residue in Daltons.iterkeys():
 extend = prefix + residue
 # test every new suffix created by adding this new reside
 # Note: this includes the residue itself as the length 1 suffix
 suffix = [extend[i:] for i in xrange(len(extend))]
 for fragment in suffix:
 if (sum([Daltons[res] for res in fragment]) not in spectrum):
 break
 else:
 UltimatePossiblePeptide(spectrum, extend)

spectrum = TheoreticalSpectrum('PLAY')
%time UltimatePossiblePeptide(spectrum)
print len(peptideList), peptideList, "PLAY" in peptideList
%time matches = TestPeptides(peptideList, spectrum)
print matches, "PLAY" in matches

A little slower, but our list is pruned significantly

All of theses have identical spectrums

19

Now let's return to our real peptide

CPU times: user 66 ms, sys: 8 ms, total: 74 ms
Wall time: 63.9 ms
16
True
CPU times: user 1e+03 µs, sys: 0 ns, total: 1e+03 µs
Wall time: 1.55 ms
16
True

spectrum = TheoreticalSpectrum(TyrocidineB1)
%time UltimatePossiblePeptide(spectrum)
print len(peptideList)
print TyrocidineB1 in peptideList
%time matches = TestPeptides(peptideList, spectrum)
print len(matches)
print TyrocidineB1 in matches

VKLFPWFNQY
VKIFPWFNKY VKIFPWFNQY VKLFPWFNKY VKLFPWFNQY
VQIFPWFNKY VQIFPWFNQY VQLFPWFNKY VQLFPWFNQY
YKNFWPFIKV YKNFWPFIQV YKNFWPFLKV YKNFWPFLQV
YQNFWPFIKV YQNFWPFIQV YQNFWPFLKV YQNFWPFLQV

print TyrocidineB1
for i, peptide in enumerate(peptideList):
 print peptide,
 if (i % 4 == 3):
 print

All of these peptides give also give us our desired spectrum

20

Great, but our assumptions are a little Naïve

In reality, Mass Spectometers don't report the Theoretical Spectrum of a peptide

Instead they report a measured or Experimental Spectrum

This spectrum might miss some fragments

It might also report false fragments

From Contaminants

New peptides formed by unintended reactions between fragments

The result is that some of the masses that appear may be misleading, and some that we want might be missing

We need to develop algorithms for reporting candidate protein sequences that are robust to noise

21

Example experimental spectrum for Tyrocidine B1

 97, 99, 113, 114, 128, 147, 163,
 186, 200, 227, 241, 242, 244, 260,
 261, 283, 291, 333, 340, 357, 388,
 389, 405, 430, 447, 457, 485, 487,
 543, 544, 552, 575, 577, 584, 659,
 671, 672, 690, 691, 731, 738, 770,
 804, 818, 819, 835, 906, 917, 932,
 982, 1031, 1060, 1095, 1159, 1223, 1322

False Masses: present in the experimental spectrum, but not in the theoretical spectrum

Missing Masses: present in the theoretical spectrum, but not in the experimental spectrum

22

Example experimental spectrum for Tyrocidine B1

 97, 99, 113, 128, 147, 163,
 186, 200, 227, 241, 242, 244, 260,
 261, 283, 291, 333, 340, 357,
 405, 430, 447, 457, 487,
 543, 544, 552, 575, 577, 584, 659,
 671, 672, 690, 691, 731, 738, 770,
 804, 818, 819, 835, 906, 917, 932,
 982, 1031, 1095, 1159, 1322

False Masses: We don't know which these are

Missing Masses: And these values don't appear

23

An aside: Faking an Experimental Spectrum

Missing Masses = [1159, 114, 691, 186, 819, 357]
False Masses = [457, 200, 731, 906, 659]

generate a synthetic experimental spectrum with 10% Error
import itertools
import random
random.seed(1961)

spectrum = TheoreticalSpectrum(TyrocidineB1)

Pick around ~10% at random to remove
missingMass = random.sample(spectrum[:-1], 6) # keep largest mass
print "Missing Masses = ", missingMass

Add back another ~10% of false, but actual, peptide masses
falseMass = []
for i in xrange(5):
 fragment = ''.join(random.sample(Daltons.keys(), random.randint(2,len(TyrocidineB1)-2)))
 weight = sum([Daltons[residue] for residue in fragment])
 falseMass.append(weight)
print "False Masses = ", falseMass

experimentalSpectrum = sorted(set([mass for mass in spectrum if mass not in missingMass] + falseMass))

[97, 99, 113, 128, 147, 163, 200, 227, 241, 242, 244, 260, 261, 283, 291, 333, 340, 388, 389, 405, 430, 447, 457, 485, 487, 543, 544, 552, 575, 577, 584, 65
9, 671, 672, 690, 731, 738, 770, 804, 818, 835, 906, 917, 932, 982, 1031, 1060, 1095, 1223, 1322]

print experimentalSpectrum

24

A Golf Tournament Analogy

After the first couple of rounds of a major golf tournament a cut is made of all golfers who are so far

back from the leader that it is deemed they are unlikely to ever finish in the money

These cut golfers are removed from further consideration

This choice is heuristic

It is possible that a player just below the cut could have two exceptional rounds, but that is considered unlikely

What is the equivalent of a score in our peptide finding problem?

The number of matching masses in the candidate peptide's Theoretical Spectrum and the Experimental Spectrum

Normalized score, why?

len(intersection of candidate and experimental spectrums) / len(union of candidate and experimental spectrums)

Jaccard Index for sets

In our peptide golf game a round will be considered a one peptide extension of a active set of player

peptides

We will do cuts on every round, keeping to top 5% of finishers or the top 5 players, which ever is

more

Why 5%? It is arbitrary, but on each round we will extend the current set of players by one of 20 amino acids, thus increasing

the number of peptides by a factor of 20, so reducing by 5% leaves the poolsize realtively stable.

25

An Implementation

 400 Players in round 1 [0.0000]
 480 Players in round 2 [0.0600]
 1280 Players in round 3 [0.1200]
 1560 Players in round 4 [0.2000]
 2000 Players in round 5 [0.2745]
 2600 Players in round 6 [0.3654]
 3320 Players in round 7 [0.4615]
 3520 Players in round 8 [0.5556]
 3840 Players in round 9 [0.6545]
 2400 Players in round 10 [0.8036]
 160 Players in round 11 [0.8036]
Done, no sequences can be extended
CPU times: user 1.52 s, sys: 55 ms, total: 1.58 s
Wall time: 1.51 s
[0.8035714285714286, 'YQNFWPFLQV', 'YQNFWPFLKV', 'YQNFWPFIQV', 'YQNFWPFIKV', 'YKNFWPFLQV', 'YKNFWPFLKV', 'YKNFWPFIQV', 'YKNFWPFIKV', 'VQLFPWFNQY', 'VQLFPWFN
KY', 'VQIFPWFNQY', 'VQIFPWFNKY', 'VKLFPWFNQY', 'VKLFPWFNKY', 'VKIFPWFNQY', 'VKIFPWFNKY']
16 Candidate residues with 0.803571428571 matches
VKLFPWFNQY True

def LeaderboardFindPeptide(noisySpectrum, cutThreshold=0.05):
 # Golf Tournament Heuristic
 spectrum = set(noisySpectrum)
 target = max(noisySpectrum)
 players = [''.join(peptide) for peptide in itertools.product(Daltons.keys(), repeat=2)]
 round = 1
 currentLeader = [0.0, '']
 while True:
 print "%8d Players in round %d [%5.4f]" % (len(players), round, currentLeader[0])
 leaderboard = []
 for prefix in players:
 testSpectrum = set(TheoreticalSpectrum(prefix))
 totalWeight = max(testSpectrum)
 score = len(spectrum & testSpectrum)/float(len(spectrum | testSpectrum))
 if (score > currentLeader[0]):
 currentLeader = [score, prefix]
 elif (score == currentLeader[0]):
 currentLeader += [prefix]
 if (totalWeight < target):
 leaderboard.append((score, prefix))
 remaining = len(leaderboard)
 if (remaining == 0):
 print "Done, no sequences can be extended"
 break
 leaderboard.sort(reverse=True)
 # Prune the larger of the top 5% or the top 5 players
 cut = leaderboard[max(min(5,remaining-1),int(remaining*cutThreshold))][0]
 players = [p+r for s, p in leaderboard if s >= cut for r in Daltons.iterkeys()]
 round += 1
 return currentLeader

spectrum = TheoreticalSpectrum(TyrocidineB1)
experimentalSpectrum = [mass for mass in spectrum if mass not in missingMass] + falseMass
%time winners = LeaderboardFindPeptide(experimentalSpectrum)
print winners
print len(winners) - 1, "Candidate residues with", winners[0], 'matches'
print TyrocidineB1, TyrocidineB1 in winners

26

Next Time

This method works well, but it relys on heuristcs, and thus might miss the best answer

Our methods are still make a lot of simplfying assumptions

Relying only exact matches might mislead us

We will continue to explore ways of assembling peptide sequences from a given experimental spectrum

27

