
Protein Sequences and Antibotics

Alexander Fleming discovered Antibotics in 1928

Small peptide sequences that target and kill bacteria

Generated naturally by fungi and other bacteria

Today's questions; Where do they come from? How can one infer their sequence?
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Discovery of Penicillin (1928)

Upon returning from holiday in 1928 a british biologist and pharmacolgist, Alexander

Fleming, discovered a strange pattern of cell death in a stack of staphylococci cultures he had

on a bench in a corner of his laboratory.

Fleming noticed that one culture was contaminated with a fungus, Penicillium, and that the

colonies of staphylococci immediately surrounding the fungus had been destroyed, whereas

other staphylococci colonies farther away were normal, and famously remarked "That's

funny".

He attempted to isolate the agent that killed the bacteria, and even hypothesized that such an

agent might be suitable for treating infections known to be caused by staphylococci. But, he

had little luck.

It proved hard to collect enough Penicillin to make it viable af a drug throughout the 1930s.

Eventually, a mouldy cantalope found in Illinois in 1943, would provide a mold capable of generating high quantities of Penicillin

and greatly reduce the World War II battlefield infection called Sepsis.

The chemical structure of Penicillin was not determined until 1945 by Dorothy Hodgkin, another british X-ray crystallographer

like Rosalind Franklin.  
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Other Antibotics

Meanwhile, a second important antibotic, Gramicidin S or Gramicidin Soviet, was discovered by Russian

microbiologist Georgyi Gause and his wife Maria Brazhnikova in 1942. This antibotic was discovered in another

strain of bacteria, Bacillus brevis, which had the tendancy to kill staphylococci nearby it.

It was actually easier to mass-produce than Penicillin, and it saved the lives of many russians in the second

world war, as well as the lives of its inventors.

Gramicidin S is largly composed of a cyclodecapeptide, a protein-like peptide chain composed of 10 amino-acids

joined head-to-tail to form a ring, called Tyrocidine B1.

The species was reclassified into the genus Brevibacillus in 1996.

The Central Dogma of Molecular Biology suggests that templates for such peptide chains are encoded in DNA.

Our first task today is to see if we can find the genomic region where Gramicidin S is encoded.  
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Recall the Central Dogma from Lecture 1

Francis Crick, one of the discoverers of DNA structure, originally coined the term "Central Dogma" in 1958. That choice of words was

particularly provocative.

 

Francis Crick
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DNA Transcription

Triplets of nucleotide bases determine one of 20 amino acids in a

protein's peptide sequence

This mapping is called the Genetic Code

Special STOP codes halt the translation process

However, the DNA sequence that we see may not be a perfect indicator of

the DNA sequence that produced it for two reasons.

1. Post-transcriptional modifications change the mRNA pattern.

For example, in eucaryotes sections of code (Introns) are

removed from the transcribed sequence.

2. Post-translational modifications modify the produced amino

acid chain. For example when a protein is circularized

So our goal is to find a partial pattern in the DNA which might have

created Gramicidin S

Recall the codon codings
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Tyrocidine B1's Peptide Sequence

Tyrocidine B1 is a small peptide composed of only 10 amino acids.

Amino Acid:     Valine      Leucine    Proline  Phenylalanine  Glutamine 
3-letter Abbr:   Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr 
1-letter Abbr:   V   K   L   F   P   W   F   N   Q   Y 
Amino Acid:           Lysine  Phenylalanine Tryptophan  Asparagine   Tyrosine 

Also note that the Lysine is modified during the circularization into another non-proteinogenic amino acid, Ornithine.
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A toolkit of Python Dictionaries

The following Python Dictionaries will be used to aid our search

codon = {  # Maps an RNA triplet of nucelotides to a 1-letter Amino Acid Abbrevation 
    "AAA": 'K', "AAG": 'K', "AAC": 'N', "AAU": 'N',
    "AGA": 'R', "AGG": 'R', "AGC": 'S', "AGU": 'S',
    "ACA": 'T', "ACG": 'T', "ACC": 'T', "ACU": 'T',
    "AUA": 'I', "AUG": 'M', "AUC": 'I', "AUU": 'I',
    "GAA": 'E', "GAG": 'E', "GAC": 'D', "GAU": 'D',
    "GGA": 'G', "GGG": 'G', "GGC": 'G', "GGU": 'G',
    "GCA": 'A', "GCG": 'A', "GCC": 'A', "GCU": 'A',
    "GUA": 'V', "GUG": 'V', "GUC": 'V', "GUU": 'V',
    "CAA": 'Q', "CAG": 'Q', "CAC": 'H', "CAU": 'H',
    "CGA": 'R', "CGG": 'R', "CGC": 'R', "CGU": 'R',
    "CCA": 'P', "CCG": 'P', "CCC": 'P', "CCU": 'P',
    "CUA": 'L', "CUG": 'L', "CUC": 'L', "CUU": 'L',
    "UAA": '*', "UAG": '*', "UAC": 'Y', "UAU": 'Y',
    "UGA": '*', "UGG": 'W', "UGC": 'C', "UGU": 'C',
    "UCA": 'S', "UCG": 'S', "UCC": 'S', "UCU": 'S',
    "UUA": 'L', "UUG": 'L', "UUC": 'F', "UUU": 'F'
}
 
AminoAcid = { # Maps 1-letter Amino Acid Abbrevations to their full name
    'A': 'Alanine', 'C': 'Cysteine', 'D': 'Aspartic acid', 'E': 'Glutamic acid', 'F': 'Phenylalanine',
    'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine', 'K': 'Lysine', 'L': 'Leucine', 'M': 'Methionine',
    'N': 'Asparagine', 'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine',
    'T': 'Theronine', 'V': 'Valine', 'W': 'Tryptophan', 'Y': 'Tyrosine', '*': 'STOP'
}
 
AminoAbbrv = { # Maps 1-letter Amino Acid Abbrevations to 3-letter Abbrevations
    'A': 'Ala', 'C': 'Cys', 'D': 'Asp', 'E': 'Glu', 'F': 'Phe', 'G': 'Gly', 'H': 'His', 'I': 'Ile',
    'K': 'Lys', 'L': 'Leu', 'M': 'Met', 'N': 'Asn', 'P': 'Pro', 'Q': 'Gln', 'R': 'Arg', 'S': 'Ser',
    'T': 'Thr', 'V': 'Val', 'W': 'Trp', 'Y': 'Tyr', '*': 'STP'    
}
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Now our Peptide sequence

We'll use the 1-letter Amino Acid abbreviations to represent our sequence, and create a dictionary that provides for every peptide in our chain

the set of codons that could encode it.

           STOP (*): ['UGA', 'UAA', 'UAG'] 
        Alanine (A): ['GCA', 'GCG', 'GCC', 'GCU'] 
       Cysteine (C): ['UGU', 'UGC'] 
  Aspartic acid (D): ['GAU', 'GAC'] 
  Glutamic acid (E): ['GAG', 'GAA'] 
  Phenylalanine (F): ['UUU', 'UUC'] 
        Glycine (G): ['GGU', 'GGG', 'GGA', 'GGC'] 
      Histidine (H): ['CAC', 'CAU'] 
     Isoleucine (I): ['AUA', 'AUC', 'AUU'] 
         Lysine (K): ['AAG', 'AAA'] 
        Leucine (L): ['CUU', 'CUG', 'CUA', 'CUC', 'UUG', 'UUA'] 
     Methionine (M): ['AUG'] 
     Asparagine (N): ['AAC', 'AAU'] 
        Proline (P): ['CCC', 'CCA', 'CCU', 'CCG'] 
      Glutamine (Q): ['CAG', 'CAA'] 
       Arginine (R): ['AGG', 'AGA', 'CGA', 'CGG', 'CGU', 'CGC'] 
         Serine (S): ['AGC', 'AGU', 'UCU', 'UCG', 'UCC', 'UCA'] 
      Theronine (T): ['ACC', 'ACA', 'ACU', 'ACG'] 
         Valine (V): ['GUU', 'GUC', 'GUG', 'GUA'] 
     Tryptophan (W): ['UGG'] 
       Tyrosine (Y): ['UAU', 'UAC'] 

TyrocidineB1 = "VKLFPWFNQY"
TrimerCodes = {}
for key, code in codon.iteritems():
    TrimerCodes[code] = TrimerCodes.get(code,[]) + [key]
for key in sorted(TrimerCodes.iterkeys()):
    print "%15s (%1s): %s" % (AminoAcid[key], key, TrimerCodes[key])
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How many ways to code Tyrocidine B1?

Since most Amino Acids have multiple codon encodings, most peptide sequences can be codes in multiple ways.

Let's figure out exactly how many ways there are to encode our little peptide.

V Val ['GUU', 'GUC', 'GUG', 'GUA'] 
K Lys ['AAG', 'AAA'] 
L Leu ['CUU', 'CUG', 'CUA', 'CUC', 'UUG', 'UUA'] 
F Phe ['UUU', 'UUC'] 
P Pro ['CCC', 'CCA', 'CCU', 'CCG'] 
W Trp ['UGG'] 
F Phe ['UUU', 'UUC'] 
N Asn ['AAC', 'AAU'] 
Q Gln ['CAG', 'CAA'] 
Y Tyr ['UAU', 'UAC'] 
6144 possible sequences 

codes = 1
for residue in TyrocidineB1:
    print residue, AminoAbbrv[residue], TrimerCodes[residue]
    codes *= len(TrimerCodes[residue])
print "%d possible sequences" % codes
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Where do we start?

Consider that translation could begin at any point in the genome.

Genes can be encoded on either strand

  <-C-A-A-T-T-T-G-A-A-A-A-A-G-G-G-A-C-C-A-A-A-T-T-G-G-T-C-A-T-A- 
    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 
   -G-T-T-A-A-A-C-T-T-T-T-T-C-C-C-T-G-G-T-T-T-A-A-C-C-A-G-T-A-T-> 

There are 3 possible open-read frames (mod-3 starting positions) on each strand.

Meanwhile, our peptide has 10 possible starting positions, since it is circular we can't be sure which codon appears first.

Let's start with something simple

Converting a DNA sequence into a protein sequence.

In other words, the computational version of translation

def revComp(dnaSeq):
    return ''.join([{'A':'T','C':'G','G':'C','T':'A'}[base] for base in reversed(dnaSeq)])
 
def proteinTranslation(dnaSeq):
    rnaSeq = dnaSeq.replace("T", "U")
    protSeq = ''
    for i in xrange(0,len(dnaSeq),3):
        if (i+3 > len(dnaSeq)):
            break
        protSeq += AminoAbbrv[codon[rnaSeq[i:i+3]]]
    return rnaSeq, protSeq
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Let's test it

# one way to code TyrocidineB1
DNA = 'GTGAAACTTTTTCCTTGGTTTAATCAATAT' 
DNAr = revComp(DNA)
 
print "A short DNA sequence"
print "5'-%s-3'" % DNA
print "3'-%s-5'" % ''.join([{'A':'T','C':'G','G':'C','T':'A'}[base] for base in DNA])
print
 
print "Read frames in primary sequence"
for frame in xrange(3):
    RNA, Peptides = proteinTranslation(DNA[frame:]+DNA[:frame])
    print "%d  %s" % (frame+1,DNA)
    print "%s   %s" % (frame*" ", RNA)
    print "%s   %s" % (frame*" ", Peptides)
    print
 
print
 
print "Read frames in the reverse-complement sequence"
for frame in xrange(3):
    RNA, Peptides = proteinTranslation(DNAr[frame:]+DNAr[:frame])
    print "%d  %s" % (frame+1,DNAr)
    print "%s   %s" % (frame*" ", RNA)
    print "%s   %s" % (frame*" ", Peptides)
    print
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Let's test it

A short DNA sequence 
5'-GTGAAACTTTTTCCTTGGTTTAATCAATAT-3' 
3'-CACTTTGAAAAAGGAACCAAATTAGTTATA-5' 

Read frames in primary sequence 
1  GTGAAACTTTTTCCTTGGTTTAATCAATAT 
   GUGAAACUUUUUCCUUGGUUUAAUCAAUAU 
   ValLysLeuPheProTrpPheAsnGlnTyr 

2  GTGAAACTTTTTCCTTGGTTTAATCAATAT 
    UGAAACUUUUUCCUUGGUUUAAUCAAUAUG 
    STPAsnPhePheLeuGlyLeuIleAsnMet 

3  GTGAAACTTTTTCCTTGGTTTAATCAATAT 
     GAAACUUUUUCCUUGGUUUAAUCAAUAUGU 
     GluThrPheSerLeuValSTPSerIleCys 

Read frames in the reverse-complement sequence 
1  ATATTGATTAAACCAAGGAAAAAGTTTCAC 
   AUAUUGAUUAAACCAAGGAAAAAGUUUCAC 
   IleLeuIleLysProArgLysLysPheHis 

2  ATATTGATTAAACCAAGGAAAAAGTTTCAC 
    UAUUGAUUAAACCAAGGAAAAAGUUUCACA 
    TyrSTPLeuAsnGlnGlyLysSerPheThr 

3  ATATTGATTAAACCAAGGAAAAAGTTTCAC 
     AUUGAUUAAACCAAGGAAAAAGUUUCACAU 
     IleAspSTPThrLysGluLysValSerHis 
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Now let's try Something Real

Chromosome dna:chromosome chromosome:GCA_000010165.1:Chromosome:1:6296436:1 
6296436 bases +GGGTCTGTGGATATCATTTTATCCACAAA ... AAGGCAAATATCCCCATAAAACTATTTCCC 

def loadFasta(filename):
    """ Parses a classically formatted and possibly 
        compressed FASTA file into a list of headers 
        and fragment sequences for each sequence contained"""
    if (filename.endswith(".gz")):
        fp = gzip.open(filename, 'rb')
    else:
        fp = open(filename, 'rb')
    # split at headers
    data = fp.read().split('>')
    fp.close()
    # ignore whatever appears before the 1st header
    data.pop(0)     
    headers = []
    sequences = []
    for sequence in data:
        lines = sequence.split('\n')
        headers.append(lines.pop(0))
        # add an extra "+" to make string "1-referenced"
        sequences.append('+' + ''.join(lines))
    return (headers, sequences)
 
header, seq = loadFasta("data/BacillusBrevis.fa")
for i in xrange(len(header)):
    print header[i]
    print len(seq[i])-1, "bases", seq[i][:30], "...", seq[i][-30:]
    print

Over 6 million bases to consider!
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Some simple "Computational" experiments

Just like a biologist, it is ill-advised to jump into a problem without first getting some sense of what works and what doesn't. Let's

first take a look at our data

One thing you might have noticed about the possible encodings of Tyrocidine B1 is that there is a single Tryptophan and only one

encoding for this amino acid

Let's try to anchor our search around that seed and grow the full sequence from there.

Where and how many Tryptophan encodings

Searching for TGG Found it 106555 times 
Searching for CCA Found it 107112 times 

def CodonSeqCount(genome, codonSeq):
    N = 0
    start = 0
    while True:
        pos = genome.find(codonSeq, start)
        if (pos < 0):
            break
        N += 1
        start = pos + 1
    return N
    
genome = seq[0]
tryptophanCode = TrimerCodes['W'][0].replace('U','T')
print "Searching for", tryptophanCode, "Found it", CodonSeqCount(genome,tryptophanCode), "times"
revCompCode = revComp(tryptophanCode)
print "Searching for", revCompCode, "Found it", CodonSeqCount(genome,revCompCode), "times"

Is this about what you expected? . We've narrowed our search some, but there's still alot.
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Narrowing things down more

Rather than searching for every possible string, let's examine the codons around this initial anchor.

Searching for W Found it 106555 times 
Searching for WF Found it 3922 times 
Searching for WFN Found it 111 times 
Searching for WFNQ Found it 5 times 
Searching for WFNQY Found it 1 times 

def AminoAcidSeqCount(genome, peptideSeq):   # Note: Only checks primary strand
    readframe = []
    anchor = peptideSeq[0]
    for rnaSeq in TrimerCodes[anchor]:
        dnaSeq = rnaSeq.replace('U','T')
        start = 0
        while True:
            pos = genome.find(dnaSeq, start)
            if (pos < 0):
                break
            i = 1
            while (i < len(peptideSeq) and (pos+3*(i+1) <= len(genome))):
                if (codon[genome[pos+3*i:pos+3*(i+1)].replace('T','U')] != peptideSeq[i]):
                    break
                i += 1
            else:
                readframe.append(pos)
            start = pos + 1
        return readframe
 
peptide = "WFNQY"
for i in xrange(1,len(peptide)+1):
    ORFs = AminoAcidSeqCount(genome,peptide[:i])
    print "Searching for", peptide[:i], "Found it", len(ORFs), "times"    

14



Could we have been Lucky this time?

Let's take a look:

  2789614 TGGTTCAACCAATAT TrpPheAsnGlnTyr 

for pos in ORFs:
    start = pos
    end = pos + (3*len(peptide))
    print "%9d %s %s" % (start, genome[start:end], proteinTranslation(genome[start:end])[1])

Recall we are looking for a substring of ValLysLeuPheProTrpPheAsnGlnTyr, which we found, but to be sure let's look around a little more.

  2789608 CATGAATGGTTCAACCAATATTACGGA HisGluTrpPheAsnGlnTyrTyrGly 

for pos in ORFs:
    start = pos - (2*3)
    end = pos + (3*(len(peptide)+2))
    print "%9d %s %s" % (start, genome[start:end], proteinTranslation(genome[start:end])[1])

We didn't find what we were expecting.
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What Went Wrong?

1. We only searched in one direction from our anchor

2. We didn't search the reverse-complement sequence

3. We didn't consider that the cycle could have been broken somewhere in between "W-F-N-Q-Y"

One of the earlier 5, 111, 3922, or 106555 candidates might be the solution

4. The best approach might be to call AminoAcidSeqCount() will all 10 circular permutations of "VKLFPWFNQY" (assuming that we

also fix the reverse-complement sequence problem)

['VKLFPWFNQY', 
 'KLFPWFNQYV', 
 'LFPWFNQYVK', 
 'FPWFNQYVKL', 
 'PWFNQYVKLF', 
 'WFNQYVKLFP', 
 'FNQYVKLFPW', 
 'NQYVKLFPWF', 
 'QYVKLFPWFN', 
 'YVKLFPWFNQ']

[TyrocidineB1[i:]+TyrocidineB1[:i] for i in xrange(len(TyrocidineB1))]

But even if you tried alll these fixes, you would still not find the code for Tyrocidine B1 in Brevibacillus brevis.
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Proteins that make Petide Chains

The Central Dogma is not the only way to make proteins!

Bacteria and fungi use large multifunctional enzymes called NonRibosomal Peptide Synthetases (NRPSs) to produce peptide chains that

are not encoded in DNA. Nonribosomal peptides are synthesized by nonribosomal peptide synthetases, which, unlike the ribosomes, are

independent of messenger RNA. Each nonribosomal peptide synthetase can synthesize only one type of peptide. They are often toxins,

siderophores, or pigments. Nonribosomal peptide antibiotics, cytostatics, and immunosuppressants are widely used as drugs.
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So we are left with a Question

How do you figure out a peptide's amino acid sequence? As we just saw, it may not appear in the genome.

Next time we will delve deeper into laboratory methods to start a discussion about peptide sequence inference
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