
Finding TFBS Motifs in our Lifetime

Recall from last time that the Brute Force approach for finding a common 10-mer motif

common to 10 sequences of length 80 bases was going to take up roughly 30,000 years

Today well consider alternative and non-obvious approaches for solving this problem

We will trade one old man (us) for another (an Oracle)

1

Recall from last Lecture

The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

 1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat TAGATCTGAA
 2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt TGGATCCGAA
 3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt TAGACCCGAA
 4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg TAAATCCGAA
 5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac TAGGTCCAAA
 6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc TAGATTCGAA
 7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta CAGATCCGAA
 8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA TAGATCCGTA
 9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac TAGATCCAAA
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg TCGATCCGAA
 9+9+9+9+9
 +8+9+9+8+10
 = 89

Some notes:

1. There are no exact matches

2. The consensus motif gives a good score

2

Consensus Scoring Function

• We developed a consensus scoring function to address noise

• But, we needed to apply it an exponential number, of times!

• Here's the scoring function...

O()N
M

def Score(s, DNA, k):
 """
 compute the consensus SCORE of a given k-mer
 alignment given offsets into each DNA string.
 s = list of starting indices, 1-based, 0 means ignore
 DNA = list of nucleotide strings
 k = Target Motif length
 """
 score = 0
 for i in xrange(k):
 # loop over string positions
 cnt = dict(zip("acgt",(0,0,0,0)))
 for j, sval in enumerate(s):
 # loop over DNA strands
 base = DNA[j][sval+i]
 cnt[base] += 1
 score += max(cnt.itervalues())
 return score

3

And here's the Score we're looking for...

seqApprox = [
 'tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat',
 'cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt',
 'gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt',
 'aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctgatgacaatacggaacatgccggctccggg',
 'accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac',
 'tagattcgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc',
 'gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta',
 'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgta',
 'ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac',
 'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtcgatccgaaattcg']

89

print Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

10000 loops, best of 3: 39.9 µs per loop

%timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

So even at a blazing we'll need many lifetimes to compute the scores

4

40μs 70
10

Pruning Trees

• One method for reducing the computational cost of a search algorithm is to prune the space of permutations that could not

possibly lead to a better answer than the current best answer.

• Pruning decisions are based on solutions to subproblems that appear early on and offer no hope

• How does this apply to our Motif finding problem?

Consider any permutation of offsets that begins with the indices [25, 63, 10, 43,]. Just based on the first 4 indices the largest

possible score is 17 + 6*10 = 87, which assumes that all 6 remaining strings match perfectly at all 10 positions.

 DNA[0][25:35] a a g g g a a a g t
 DNA[1][63:73] g t t t a a t c g g
 DNA[2][10:20] a g c c t g g t t a
 DNA[3][43:53] t t g a c c t g a t
 a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]
 Profile c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]
 g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
 t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
 [2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 89, there is no need to consider the 70 offset permuations that start with these 4 indices.

5

6

Search Trees

Our standard method for enumerating permutations can be considered as a traversal of leaf nodes in a search

tree

Suppose after checking the first few offsets could know already that any score of children nodes could not

beat the best score seen so far?

6

Branch-and-Bound Motif Search

Since each level of the tree goes deeper into search, discarding a prefix discards

all following branches

This saves us from looking at leaves

Note our enumeration of tree-branches is depth-first

We'll formulate of trimming algorithm as a recursive algorithm

7

(N– k + 1)t−depth

A Recursive Exploration of a Search Tree

bestAlignment = []
prunedPaths = 0

def exploreMotifs(DNA,k,path,bestScore):
 """ Search for a k-length motif in the list of DNA sequences by exploring
 all paths in a search tree. Each call extends path by one. Once the
 path reaches the number of DNA strings a score is computed. """
 global bestAlignment, prunedPaths
 depth = len(path)
 M = len(DNA)
 if (depth == M): # here we have an index in all M sequences
 s = Score(path,DNA,k)
 if (s > bestScore):
 bestAlignment = [p for p in path]
 return s
 else:
 return bestScore
 else:
 # Let's consider if an optimistic best score can beat the best score so far
 if (depth > 1):
 OptimisticScore = k*(M-depth) + Score(path,DNA,k)
 else:
 OptimisticScore = k*M
 if (OptimisticScore < bestScore):
[17, 47, 18, 33, 21, 0] 53 8615931
CPU times: user 5min 17s, sys: 533 ms, total: 5min 17s
Wall time: 5min 17s

8

Observations

For our problem instance, Branch-and-Bound Motif finding is significantly faster

It found a motif in the first 6 strings in less time than the Brute Force approach found a solution in the first 4 strings

More than times faster

It did so by trimming more than 8 Million paths

Trimming added extra calls to Score (basically doubling the worst-case number of calls), but ended up saving even

more hopeless calls along longer paths.

In practice, Branch-and-Bound, significantly improved the average performance

Does this improve the worst-case performance from ?

What if all of our motifs were found at the end of each DNA string?

How do we avoid these worse case data sets?

Randomize the search-tree tranversal order

9

≈ 5000702

O(k)N
M

We need a new approach

Enumerating every possible permuation of motif positions is still not getting us

the speed we want.

Let's try another tried-and-tested approach to algorithm design, mixing up the

problem

Suppose that some Oracle could tell us what the motif is

How long would it take us to find its position in each string?

We could compute the Hamming Distance from our given motif to the k-mer at every

position of each DNA sequence and keep track of the smallest distance and its position on

each string.

These positions are our best guess of where the motif can be found on each string

Let's call this approach scanning-and-scoring to find a given motif.

10

Scanning-and-Scoring a Motif

def ScanAndScoreMotif(DNA, motif):
 totalDist = 0
 bestAlignment = []
 k = len(motif)
 for seq in DNA:
 minHammingDist = k+1
 for s in xrange(len(seq)-k+1):
 HammingDist = sum([1 for i in xrange(k) if motif[i] != seq[s+i]])
 if (HammingDist < minHammingDist):
 bestS = s
 minHammingDist = HammingDist
 bestAlignment.append(bestS)
 totalDist += minHammingDist
 return bestAlignment, totalDist

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11)
1000 loops, best of 3: 1.41 ms per loop

print ScanAndScoreMotif(seqApprox, "tagatccgaa")
%timeit ScanAndScoreMotif(seqApprox, "tagatccgaa")

Wow, we can test over 650 motifs per second!

11

Scan-and-Score Motif Performance

There are positions to test the motif,

and each test requires tests.

So each scan is .

So where where do we get candidate motifs?

Can we try all of them? There are in our example.

Do the math, 1048576 motifs × 2 mS ≈ 35 mins

Not fast, but less than a lifetime

This approach is called a Median String Motif Search

Recall from last Lecture that a string that minimizes Hamming distance is like finding a middle or median

string that is closer to all instances than the instances are to each other.

12

M(N − k + 1)

k

O(MNk)

= 1048576410

Let's Do It

CPU times: user 26min 35s, sys: 613 ms, total: 26min 35s
Wall time: 26min 35s

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

import itertools

def MedianStringMotifSearch(DNA,k):
 """ Consider all possible 4**k motifs"""
 bestAlignment = []
 minHammingDist = k*len(DNA)
 kmer = ''
 for pattern in itertools.product('acgt', repeat=k):
 motif = ''.join(pattern)
 align, dist = ScanAndScoreMotif(DNA, motif)
 if (dist < minHammingDist):
 bestAlignment = [p for p in align]
 minHammingDist = dist
 kmer = motif
 return bestAlignment, minHammingDist, kmer

%time MedianStringMotifSearch(seqApprox,10)

Should we declare victory and move on? Do you find anything uncomfortable about an algorithm that requires steps?

13

O(MNk)4k

Notes on Median String Motif Search

Similarities between finding and alignment with minimal Hamming Distance and maximizing a Motif's

consensus score.

In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in xrange(k) if motif[i] != seq[s+i]])

we had counted matches

Matches = sum([1 for i in xrange(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance) we would be using

the same measure as Score().

Thus, we expect MedianStringMotifSearch() to give the same answer as either BruteForceMotifSearch() or

BranchAndBoundMotifSearch().

However, the term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score more

than times. Another not-in-a-lifetime algorithm

We can also apply the Branch-and-Bound approach to the Median string method, but, as before it would

only improve the average case.

14

4
k

10
12

Other ways to guess the motif?

If we knew that the motif that we are looking for was contained somewhere in our DNA sequences we

could test the motifs from our DNA, giving a algorithm.

Unfortunately, as you may recall our motif did not appear actually appear in our data.

You could keep track of a few good motif candidates using a manageable and perhaps random subsets of

the given DNA sequences, and use them as your candidate motifs.

15

(N − k + 1)t O()N
2
t
2

Let's try considering only Motifs seen in the DNA

709 Motifs in our set
CPU times: user 1.33 s, sys: 16 ms, total: 1.34 s
Wall time: 1.33 s

([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], 17, 'tagatccaaa')

def ContainedMotifSearch(DNA,k):
 """ Consider only motifs from the given DNA sequences"""
 motifSet = set()
 for seq in DNA:
 for i in xrange(len(seq)-k+1):
 motifSet.add(seq[i:i+k])
 print "%d Motifs in our set" % len(motifSet)
 bestAlignment = []
 minHammingDist = k*len(DNA)
 kmer = ''
 for motif in motifSet:
 align, dist = ScanAndScoreMotif(DNA, motif)
 if (dist < minHammingDist):
 bestAlignment = [s for s in align]
 minHammingDist = dist
 kmer = motif
 return bestAlignment, minHammingDist, kmer

%time ContainedMotifSearch(seqApprox,10)

Not exactly the motif we were looking for (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa', but boy was it fast! Where's a good

Oracle when you need one?

16

Insights from the consensus score matrix

If we call Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

DNA[0][17:27] t a g a t c t g a a
DNA[1][31:41] t a g a c c a a a a
DNA[2][18:28] t a g a c c c g a a
DNA[3][33:43] t a a a t c c g a a
DNA[4][21:31] t a g g t c c a a a
DNA[5][0:10] t a g a t t c g a a
DNA[6][46:56] c a g a t c c g a a
DNA[7][70:80] t a g a t c c g t a
DNA[8][16:26] t a g a t c c a a a
DNA[9][65:75] t c g a t c c g a a
 a [0, 9, 1, 9, 0, 0, 1, 3, 9,10]
 c [1, 1, 0, 0, 2, 9, 8, 0, 0, 0]
 g [0, 0, 9, 1, 0, 0, 0, 7, 0, 0]
 t [9, 0, 0, 0, 8, 1, 1, 0, 1, 0]
 [9, 9, 9, 9, 8, 9, 8, 7, 9,10] Score = 87
Consensus t a g a t c c g a a Our motif!

Any Ideas?

17

Contained Consensus Motif Search

709 Motifs in our set
CPU times: user 1.06 s, sys: 23 ms, total: 1.08 s
Wall time: 1.06 s

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

def Consensus(s, DNA, k):
 """ compute the consensus k-Motif of an alignment given offsets into each DNA string.
 s = list of starting indices, 1-based, 0 means ignore, DNA = list of nucleotide strings,
 k = Target Motif length """
 consensus = ''
 for i in xrange(k):
 # loop over string positions
 cnt = dict(zip("acgt",(0,0,0,0)))
 for j, sval in enumerate(s):
 # loop over DNA strands
 base = DNA[j][sval+i]
 cnt[base] += 1
 consensus += max(cnt.iteritems(), key=lambda tup: tup[1])[0]
 return consensus

def ContainedConsensusMotifSearch(DNA,k):
 bestAlignment, minHammingDist, kmer = ContainedMotifSearch(DNA,k)
 motif = Consensus(bestAlignment,DNA,k)
 newAlignment, HammingDist = ScanAndScoreMotif(DNA, motif)
 return newAlignment, HammingDist, motif

%time ContainedConsensusMotifSearch(seqApprox,10)

Now we're cooking!

18

Dad, are we there yet?

We got the answer that we were looking for, but

How can we be sure it will always give the correct answer?

Our other methods were exhaustive, they examined every possibility

This method considers only a subset of solutions, picks the best one in a greedy fashion

What if there had been ties amoung the candidate motifs?

What if the consensus score (87% matches) had been lower

Would we, should we, be satisfied?

It's one thing to be greedy, and another to be both greedy and biased

Our method is greedy in that it considers only the best contained motif, greedy methods are subject to falling into

local minimums

Since consider only subsequences as motifs we introduce bias

Note that Consensus can generate motifs not seen in our data

19

A randomized approach to motif finding

One way to avoid bias and local minima is to introduce randomness

We can generate candidate motifs from our data by treating it as distribution

likely motif candidates from this distribution are those generated by Consensus

Consensus strings can be tested by Scan-and-Score and their alignments lead to new consensus

strings

Eventually, we should converge to some local minimal answer

To avoid finding a local minimum, we try several random starts, and search for the

best score amongst all these starts.

A randomized algorithm does not guarantee an optimal solution. Instead it promises a good/plausible

answer on average, and it is not susceptible to a worse-case data sets as our greedy/biased method was.

20

Code for Randomized Motif Search

import random

def RandomizedMotifSearch(DNA,k):
 """ Searches for a k-length motif that appears
 in all given DNA sequences. It begins with a
 random set of candidate consensus motifs
 derived from the data. It refines the motif
 until a true consensus emerges."""

 # Seed motifs from random alignments
 motifSet = set()
 for i in xrange(500):
 randomAlignment = [random.randint(0,len(DNA[j])-k) for j in xrange(len(DNA))]
 motif = Consensus(randomAlignment, DNA, k)
 motifSet.add(motif)

 bestAlignment = []
 minHammingDist = k*len(DNA)
 kmer = ''
 testSet = motifSet.copy()
 while (len(testSet) > 0):
 print len(motifSet),
 nextSet = set()
 for motif in testSet:
 align, dist = ScanAndScoreMotif(DNA, motif)
 # add new motifs based on these alignments

21

Let's try it

500 749 822 839 842CPU times: user 1.43 s, sys: 23 ms, total: 1.45 s
Wall time: 1.56 s

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

%time RandomizedMotifSearch(seqApprox,10)

Randomized algorithms should be restarted multiple times to insure a stable solution.

500 751 820 836 837 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 750 825 838 844 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 755 837 856 859 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
499 745 814 831 834 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 760 837 859 862 863 864 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 744 813 825 827 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
498 746 830 846 850 851 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 766 848 864 866 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 728 800 810 811 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 750 833 851 852 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

for i in xrange(10):
 print RandomizedMotifSearch(seqApprox,10)

22

Lessons Learned

We can find Motifs in our lifetime

Practical exhaustive search algorithm for small k, MedianStringMotifSearch()

Practical fast algorthim RandomizedMotifSearch(DNA,k)

Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"

Reversing the objective, pretending that you know the answer, and validating it

The power of randomness

Not susceptable to worse case data

Avoids local minimums that plague some greedy algorithms

23

