
Where does DNA Replication Begin?

continued from last time...

After a couple of false starts, we continue on our quest to develop an algorithm for finding the origin of replication,

OriC, locus in a DNA sequence.
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Let's take a closer look at the biology

Recall DNA Strands have Directions:
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DNA Polymerases do the copying

Once the DNA strands are pulled apart the process of replication begins. It proceeds in both directions on both strands and contines until the center

of termimination, terC, is reached.

But it doesn't exactly progress symmetrically in both directions. DNA polymerases, the proteins which actually copy the strands, operate

unidirectionally. They first must attach to specific subsequences, called primers. Once they begin, they copy the attached strands along the (3’ → 5’)

direction.
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Replication progresses in one direction

Beginning at the oriC locus the DNA molecule is pulled apart and two DNA polymerases, one on each strand begin copying on each strand.

As they progress the DNA separates more. The boundrary of the separation between single-stranded and double-stranded DNA is called the

replication fork. Eventually, this separation exposes a significantly large single-stranded DNA on each strand.
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Once the replication fork opens enough...

This open region of single-stranded DNA eventually allows a second phase of the replication process to begin. A second DNA polymerase detects a

primer sequence, and then start replicating the exposed sequence Ahead of it and works towards the beginning of the previous replication primer.

However, this DNA polymerase does not have too far to go.
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When opened a little more

As the initial, or Leading, polymerase continues to copy its half strand more of the complement strand is exposed, which sets off the process over

and over again until the termination center is reached.

These short partial copys are called Okazaki fragments and they lie along the Lagging half-strand of the replication.
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Eventually the whole genome is replicated

The lengths of Okazaki fragments in prokaryotes and eukaryotes differ. Prokaryotes tend to have longer Okazaki fragments (≈ 2,000 nucleotides

long) than eukaryotes (100 to 200 nucleotides long).  

Once completed, the adjacent Okazaki fragments are joined by another important protein called a DNA ligase.
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Cytosine Uracil 

Observations

The leading half strand is copied as a single contiguous piece that progresses at a uniform rate as the DNA

separates

The other lagging half strand lies exposed while waiting for the gap to enlarge enough, and until another

primer sequence appears so that another DNA polymerase can start

Replication on the lagging half-strand proceeds in a stop-and-go fashion extending by one Okazaki fragment

at a time

A DNA repair mechanism then comes along to fix all of the lagging half-strand fragments

What is the downside of leaving single-stranded DNA exposed?

Single-stranded DNA is less stable than double-stranded

Single-stranded DNA can potentially mutate when exposed

The most common mutation type is called deanimation

Deanimation tends to convert C nucelotides into T nucelotides.
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Now what?

How might these observations inform a new algorithm for finding OriC?

When considering the half-strands on either side of a candidate OriC region what would we expect?

More primer patterns on the lagging side to promote Okazaki fragments

Which primer do we look for?

Go back to our k-mer counts from last time?

But whatever the primer pattern is, there should be fewer Cytosines on the lagging side due to deanimation

over multiple generations (replications)

Idea: Look for points that divide the genome such that number of Cs in the suffix, and prefix, reverse

complemented, are minimal

                                     fewer Cs --> 
5'-...CAAACCTACCACCAAACTCTGTATTGACCA|TTTTAGGACAACTTCAGGGTGGTAGGTTTC...-3' 
3'-...GTTTGGATGGTGGTTTGAGACATAACTGGT|AAAATCCTGTTGAAGTCCCACCATCCAAAG...-5' 
                        <-- fewer Cs 
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Let's look for evidence

Recall Thermotoga Petrophila, from last lecture (the bacteria whose k-mers did not match the frequent ones that we

found in Vibrio Cholerae). Let's examine the nucleotide counts on either side of its OriC region:

base Total Forward Reverse Diff

C 427419 207901 219518 -11617

G 413241 211607 201634 9973

A 491488 247525 243963 3562

T 491363 244722 246641 -1919

The Lagging strand in the forward direction corresponds to exposed Cs, while Gs in the reverse direction correspond to

Cs of the Lagging strand. Thus, the Lagging strands have 9973 + 11617 = 21590 fewer Cs than the Leading strands. 
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Code for reading sequences from last time

def loadFasta(filename):
    """ Parses a classically formatted and possibly 
        compressed FASTA file into a list of headers 
        and fragment sequences for each sequence contained"""
    if (filename.endswith(".gz")):
        fp = gzip.open(filename, 'rb')
    else:
        fp = open(filename, 'rb')
    # split at headers
    data = fp.read().split('>')
    fp.close()
    # ignore whatever appears before the 1st header
    data.pop(0)     
    headers = []
    sequences = []
    for sequence in data:
        lines = sequence.split('\n')
        headers.append(lines.pop(0))
        # add an extra "+" to make string "1-referenced"
        sequences.append('+' + ''.join(lines))
    return (headers, sequences)
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Code for reading sequences from last time

header, seq = loadFasta("data/ThermotogaPetrophila.fa")
 
for i in xrange(len(header)):
    print header[i]
    print len(seq[i])-1, "bases", seq[i][:30], "...", seq[i][-30:]
    print
 
oriCStart = 786686
oriOffset = 211          # offset to the middle of OriC 

CP000702.1 Thermotoga petrophila RKU-1, complete genome 
1823511 bases +AGTTGGACGAAGGTTCTGATCCCTACAGA ... TCAATGTTATAATAAATACCGTGCAAAAAC 
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Counting base occurences in large strings

Here's a somewhat standard approach to counting characters in a string.

def getStatsV1(sequence, start):
    halflen = len(sequence)//2
    terC = start + halflen
    # handle genome's circular nature
    if (terC > len(sequence)):
        terC = terC - len(sequence) + 1
    total = { base: 0 for base in "ACGT" }
    forwardCount = { base: 0 for base in "ACGT" }
    reverseCount = { base: 0 for base in "ACGT" }
    for position in xrange(1,len(sequence)):
        base = sequence[position]
        total[base] += 1
        if (terC > start):
            if position >= start and position < terC: 
                forwardCount[base] += 1
            else:
                reverseCount[base] += 1
        else:
            if position >= start or position < terC: 
                forwardCount[base] += 1
            else:
                reverseCount[base] += 1
    return {key: (total[key], forwardCount[key], reverseCount[key]) for key in total.iterkeys()}
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Another way to count

This version makes four passes, one for each base, but moves the dictionary overhead outside of the linear scan.

def getStatsV2(sequence, start):
    halflen = len(sequence)//2
    terC = start + halflen
    # handle genome's circular nature
    if (terC > len(sequence)):
        terC = terC - len(sequence) + 1
    stats = {}
    for base in "ACGT": 
        total = sequence.count(base)
        if (terC > start):
            forwardCount = sequence[start:terC].count(base)
            reverseCount = total - forwardCount
        else:
            reverseCount = sequence[terC:start].count(base)
            forwardCount = total - reverseCount
        stats[base] = (total, forwardCount, reverseCount)
    return stats
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Let's compare counting approaches

How much difference do you expect? Why do we care?

for getStats in [getStatsV1, getStatsV2]:
    answer = getStats(seq[0], oriCStart+oriOffset)
    for base in "CGAT":
        total, forwardCount, reverseCount = answer[base]
        print "%s: %8d %8d %8d %8d" % (base,total,forwardCount,reverseCount,forwardCount-reverseCount)
    %timeit getStats(seq[0], oriCStart+oriOffset)
    print

C:   427419   207901   219518   -11617 
G:   413241   211607   201634     9973 
A:   491488   247525   243963     3562 
T:   491363   244723   246640    -1917 
1 loop, best of 3: 517 ms per loop 

C:   427419   207901   219518   -11617 
G:   413241   211607   201634     9973 
A:   491488   247525   243963     3562 
T:   491363   244723   246640    -1917 
10 loops, best of 3: 53.3 ms per loop 
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One more contender

Python provides an optimized library called "numpy" for processing vectorized data. Our sequence can be considered a

vector of bases.

import numpy
 
def getStatsV3(sequence, start):
    halflen = len(sequence)//2
    terC = start + halflen
    # handle genome's circular nature
    if (terC > len(sequence)):
        terC = terC - len(sequence) + 1
    genome = numpy.fromstring(sequence, dtype="uint8")
    total = numpy.bincount(genome)
    if (terC > start):
        forwardCount = numpy.bincount(genome[start:terC])
        reverseCount = total - forwardCount
    else:
        reverseCount = numpy.bincount(match[terC:start])
        forwardCount = total - reverseCount
    return {b: (total[ord(b)],forwardCount[ord(b)],reverseCount[ord(b)]) for b in "ACGT"}
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Verify and time it

answer = getStatsV3(seq[0], oriCStart+oriOffset)
 
for base in "CGAT":
    total, forwardCount, reverseCount = answer[base]
    print "%s: %8d %8d %8d %8d" % (base, total, forwardCount, reverseCount, forwardCount - reverseCount)
print
 
%timeit getStatsV2(seq[0], oriCStart+oriOffset)
%timeit getStatsV3(seq[0], oriCStart+oriOffset)

C:   427419   207901   219518   -11617 
G:   413241   211607   201634     9973 
A:   491488   247525   243963     3562 
T:   491363   244723   246640    -1917 

10 loops, best of 3: 36.8 ms per loop 
100 loops, best of 3: 14.7 ms per loop 
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A New approach for finding OriC

So let's sample the genome looking for positions where the #G - #C is maximally skewed.
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Counting with cummulative sums

We'll use a vectorized cumuluative sum method to compute counts in the G-C skew genome wide. Given an input

vector, V, of length N. S = V.cumsum() returns:

Cumulative sums can be used to compute counts over any interval, . Example:

=Si ∑
j=0

i

Vj

Coun = −t[ij) Sj Si

v = numpy.array(numpy.random.random(20) < 0.25, dtype="int8")
s = numpy.concatenate(([0],v.cumsum()))
print v
print s
print s[15] - s[5]

[0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0] 
[0 0 1 1 1 2 3 3 4 5 6 7 7 7 7 7 7 7 7 7 7] 
5 
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Finding the genome-wide GC skew

def GCSkew(sequence):
    half = len(sequence)//2
    full = len(sequence)
    genome = numpy.fromstring(sequence+sequence, dtype='uint8')
    matchC = numpy.concatenate(([0], numpy.array(genome == ord('C'), dtype="int8").cumsum()))
    matchG = numpy.concatenate(([0], numpy.array(genome == ord('G'), dtype="int8").cumsum()))
    matchGC = matchG - matchC
    skew = matchGC[half:half+full]-matchGC[0:full]+matchGC[full-half:2*full-half]-matchGC[full:2*full]
    return skew

Let's test it function on the short sequence: CATGGGCATCGGCCATACGCC

%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
 
test = "+CATGGGCATCGGCCATACGCC"
y = GCSkew(test)
plt.figure(num=None, figsize=(24, 8), dpi=100)
plt.ylim([-10,10])
plt.xticks(range(len(test)), [c for c in test])
result = plt.plot(range(len(y)), y)
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Finding the genome-wide GC skew
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Now let's revisit our genome

# Run on Thermotoga Petrophila
y = GCSkew(seq[0])
N = len(y)
plt.figure(num=None, figsize=(24, 7), dpi=100)
plt.axvline(oriCStart+oriOffset, color="r", linestyle='--')
result = plt.plot(range(0,N,1000), y[0:N:1000])
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Now on the original Colera genome

header, seq = loadFasta("data/VibrioCholerae.fa")
oriCStart = 151887
y = GCSkew(seq[0])
N = len(y)
plt.figure(num=None, figsize=(24, 7), dpi=100)
plt.axvline(oriCStart, color="r", linestyle='--')
result = plt.plot(range(0,N,1000), y[0:N:1000])
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A 3  "test" genome
rd

header, seq = loadFasta("data/EscherichiaColi.fa")
 
for i in xrange(len(header)):
    print header[i]
    print len(seq[i])-1, "bases", seq[i][:30], "...", seq[i][-30:]
    print
 

CP003289.1 Escherichia coli O104:H4 str. 2011C-3493, complete genome 
5273097 bases +CATTATCGACTTTTGTTCGAGTGGAGTCC ... GTCAACAATCATGAATGTTTCAGCCTTAGT 

CP003291.1 Escherichia coli O104:H4 str. 2011C-3493 plasmid pAA-EA11, complete sequence 
74217 bases +GCCTCGCAAAACATTGCTCTATTCATGCA ... TTCTGACCGTCCTGATTTCTGCTTATATAA 

CP003290.1 Escherichia coli O104:H4 str. 2011C-3493 plasmid pESBL-EA11, complete sequence 
88544 bases +GTTGGGATGACGCCAGACCAACCTCAAAT ... CGCCTGGTGCCAGTTCTGTATGTTTATTTT 

CP003292.1 Escherichia coli O104:H4 str. 2011C-3493 plasmid pG-EA11, complete sequence 
1549 bases +CTAGCTGAAAAACTTGGAGTTAGCAGAAG ... TGTGGCGCTGTCGTTGCGGATCAGCAATTT 
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Plot the G-C skew

shift = '+'+seq[0][1000000:]+seq[0][1:1000000]
y = GCSkew(shift)
oriCGuess = y.argmax() 
N = len(y)
plt.figure(num=None, figsize=(24, 7), dpi=100)
plt.axvline(oriCGuess, color="r", linestyle='--')
result = plt.plot(range(0,N,1000), y[0:N:1000])
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Did we found the OriC region of E. Coli?

The minimum of the Skew Diagram points to this region in E. coli:

aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggta 
tgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaagacc 
tgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgatctc 
ttattaggatcgcactgccctgtggataacaaggatccggcttttaagatcaacaacctgg 
aaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcagaatga 
ggggttatacacaactcaaaaactgaacaacagttgttctttggataactaccggttgatc 
caagcttcctgacagagttatccacagtagatcgcacgatctgtatacttatttgagtaaa 
ttaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatcaagaatgt 
tgatcttcagtg 

But there are NO frequent 9-mers (that appear three or more times) in this region!

What now?

26



DnaA is more forgiving than we imagined

The OriC binding sites might not have exactly repeated 9-mers, but instead 9-mers that are very close in their

sequence. The DnaA is willing to look over these small differences.

This leads to a new problem:

Frequent Approximate k-mer Matches: Find the most frequent k-mer allowing for a small number of

mismatches. 

Input: A string Text, and integers k and d 

Output: All most frequent k-mers with up to d mismatches in Text.
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Example: Revisiting Vibrio Cholerae

If we allow for just one difference in the 9-mers ATGATCAAG and CTTGATCAT that we found for Vibrio Cholerae, we see a few

more potential binding regions pop out.

    atcaATGATCAACgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac 
    ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca 
    cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt 
    gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt 
    acgaaagCATGATCATggctgttgttctgtttatcttgttttgactgagacttgttagga 
    tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat 
    tgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcgatccgattgaag 
    atcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCATgtt 
    tccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc 

How would you approach this problem?
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Finally, the DnaA Boxes of E. Coli

Frequent 9-mers, and their reverse complements, allowing for 1-Mismatch in the inferred oriC region of E. Coli.

    aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggta 
    tgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaagacc 
    tgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgatctc 
    ttattaggatcgcactgcccTGTGGATAAcaaggatccggcttttaagatcaacaacctgg 
    aaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcagaatga 
    ggggTTATACACAactcaaaaactgaacaacagttgttcTTTGGATAActaccggttgatc 
    caagcttcctgacagagTTATCCACAgtagatcgcacgatctgtatacttatttgagtaaa 
    ttaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatcaagaatgt 
    tgatcttcagtg 
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Summary

The problem of finding the OriC region of the genome is really just a toy problem to get us thinking about both biology

and algorithms and how they interact.

Two key concepts:

Algorithms must be correct-- give the expected answer for any valid input

Many algorithms compute the same function, but some are faster than others

Next time, we will think more about methods for analyzing sequences.
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