
Hadoop, a distributed 
framework for Big Data

Move aside cows! 
It’s time for the BIG guysSlides and graphics

borrow heavily from

Prof. Nalini Venkatasubramanian

http://www.ics.uci.edu/~cs237/



• Not about size, but how data is managed

• Relational databases was all about organizing

data into tables

• Sometimes it is just too time consuming, or the 

data is just too big, to organize it in order to do 

simple queries

• Much data is unstructured or semi-structured

and we’d like to process it in parallel

• Data warehouses

BIG Data, how big is BIG?



Introduction

1. Introduction: Hadoop’s history and 
advantages

2. Architecture in detail

3. Hadoop in industry



What is Hadoop?

• Open-source implementation of a 

Map-Reduce framework for reliable, 

scalable, distributed computing and data 

storage.

• It is a flexible architecture for large scale 

computation and data processing on a 

network of commodity hardware.



Brief History of Hadoop

• Designed to answer the question: 

“How to process big data with 

reasonable cost and time?”



Search engines in 1990s

1996

1996

1997

1996



Google search engines

1998

2016

2003

2004

2006



Hadoop’s Developers

Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed 

Hadoop to support distribution for the Nutch search 

engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache 

Software Foundation.

http://en.wikipedia.org/wiki/Nutch


What is Hadoop?

• Hadoop: 

• An open-source software framework that supports data-

intensive distributed applications, licensed under the 

Apache v2 license.

• Goals / Requirements: 

• Data and Processing abstractions facilitate queries 

of large, dynamic, and rapidly growing data sets

• Structured and non-structured data

• Simple programming models

• High scalability and availability

• Use commodity (cheap!) hardware with little redundancy

• Fault-tolerance

• Move computation rather than data



Hadoop’s Architecture

• Distributed, with some modest centralization

• Main nodes of cluster are where most of the computational power 

and storage of the system lies

• Main nodes run TaskTracker to accept and reply to MapReduce

tasks, and also DataNode to store needed blocks closely as 

possible

• Central control node runs NameNode to keep track of HDFS 

directories & files, and JobTracker to dispatch compute tasks to 

TaskTracker

• Written in Java, also supports Python and Ruby



Hadoop’s Data Model

1. Given giant files

2. Chops them up into 

good-sized chunks 

(64Mb)

3. Replicate and

Distribute them

Hadoop’s

Distributed 

File 

System

Each chunk is replicated

3 times, and placed on

a different processing node

A name sever (actually 2)

keeps track of where the

chunks are



Hadoop’s Processing Model

Whenever we query the dataset,

Its done in the following stages:

Map:

1. A processor is assigned to each chunk.

2. That processor scans, filters, and

maps each data item into key-value

pairs.

3. Keys are locally binned

Shuffle:

4. Bins with common keys are

consolidated by broadcasting

them to a common node

Reduce:

5. Final processing is done of within

each bin, often agglomerative-like

operations

MapReduce

Distributed processing

Generally balanced, but

no guarantees

Processing occurs at the 

data source



Hadoop’s Architecture

• Hadoop Distributed FileSystem (Chops up and distributes data)

• Tailored to needs of MapReduce

• Targeted towards many reads of file streams

• Writes are more costly

• High degree of data replication (3x by default)

• No need for RAID on normal nodes

• Large blocksize (64MB, bigger than database pages)

• Location awareness of DataNodes in network



Hadoop’s Reality

Also need to keep track of:

1. Where the data chunks are

2. What the state of multiple MapReduce jobs are in

3. Redundancy in case there are either H/W or network issues 



Hadoop’s Architecture

NameNode:

• Stores metadata for the files, like the directory structure of a 

typical FS.

• The server holding the NameNode instance is quite crucial, 

so we keep a replicate. 

• Transaction log for file deletes/adds, etc. Does not use 

transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary 

after a DataNode failure



Hadoop’s Architecture

DataNode:

• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• NameNode decides and tracks which blocks it has

• NameNode replicates blocks 3x

• Don’t need to Homogenous

• Different levels of performance

• Different operating systems



Job-Tracker has a key role in the MapReduce Engine



Hadoop’s Architecture

MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and 

sends it to the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and 

reports on job progress, sends data (“Reduce”) or requests 

new jobs

• You can have multiple of these, but only one is responsible 

for a given query



MapReduce (Job Scheduling and

shuffling)

Hadoop Layer Cake 

HDFS

(Hadoop Distributed File System)

Hbase (key-value store)

PIG (Data Flow) Hive (SQL emulation)

Most interaction with Hadoop is mediated by job managers

using high-level APIs

1. PIG, a scripting language, with 

FOREACH, GROUP, FILTER, and ORDER constructs

2. Hive, SQL syntax, declarative specification



Hadoop in the Wild

• Hadoop is in use at most organizations that handle big data: 

o Yahoo! 

o Facebook

o Amazon

o Netflix

o Etc…

• Some examples of scale: 

o Yahoo!’s Search Webmap runs on 10,000 core Linux 

cluster and powers Yahoo! Web search 

o FB’s Hadoop cluster hosts 100+ PB of data (July, 2012) 

& growing at ½ PB/day (Nov, 2012)



Hadoop in the Wild

• System requirements

o High write throughput 

o Cheap, elastic storage

o Low latency

o High consistency (within a 

single data center good 

enough) 

o Disk-efficient sequential 

and random read 

performance



Hadoop in the Wild

• Facebook’s solution

o Hadoop + HBase as foundations

o Improve & adapt HDFS and HBase to scale to FB’s workload 

and operational considerations

 Major concern was availability: NameNode is SPOF & 

failover times are at least 20 minutes 

 Proprietary “AvatarNode”: eliminates SPOF, makes HDFS 

safe to deploy even with 24/7 uptime requirement

 Performance improvements for realtime workload: RPC 

timeout. Rather fail fast and try a different DataNode


