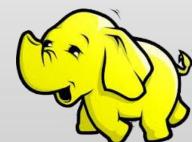
/ Inschope HordFree / Subparkage Default_Theme // ciDOCTYPE html POBLIC "-//WID chimi_wmlmse"http://www.wi/

cheed profile="http:/// cmets http-equiv="Cor

clink rel=""
clink rel="""
clink rel=""""
clink rel="""

Hadoop, a distributed framework for Big Data

Move aside cows! It's time for the BIG guys


borrow heavily from **Prof. Nalini Venkatasubramanian**

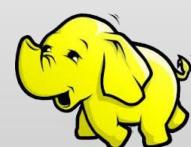
http://www.ics.uci.edu/~cs237/

Slides and graphics

(BIG Data, how big is BIG?

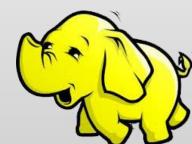
- Not about size, but how data is managed
- Relational databases was all about organizing data into tables
- Sometimes it is just too time consuming, or the data is just too big, to organize it in order to do simple queries
- Much data is unstructured or semi-structured and we'd like to process it in parallel
- Data warehouses

chead profile="http://r cheta http-equiv="Cp


clink rel=""
clink rel="""
clink rel=""""
clink rel="""

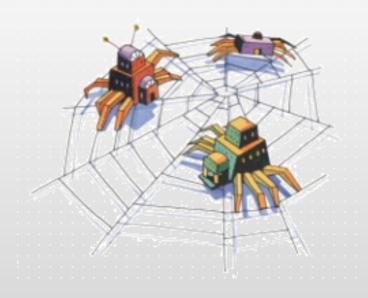
Introduction

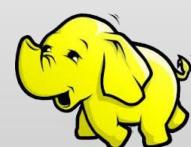
1. Introduction: Hadoop's history and advantages


2. Architecture in detail

3. Hadoop in industry

- Open-source implementation of a Map-Reduce framework for reliable, scalable, distributed computing and data storage.
- It is a flexible architecture for large scale computation and data processing on a network of commodity hardware.




chead profile="http://r cheta http-equiv="Cor"

ctitle><?php
clink rel=""
clink rel=""</pre>

Brief History of Hadoop

 Designed to answer the question:
 "How to process big data with reasonable cost and time?"

<7php 25 <1DOCTYPE heal PUBLIC "-//NBC chtml mmlnsw"http://www.wb.

chead profile="http://r cnets http-equive"Co

<title>c?php wp

clink relaty dlink rel-

(styl

[About | Help | Problems | Add Site | Search] webmaster@metacrawler.com @ Copyright 1995, 1996 Brik Selberg and Oven Ettion

All of these words

Fast Search

Search engines in 1990s

Serious Sports Fans Only \$1,000,000 in Cash and Prizes! For serious sports fans only! Play Fantasy Football

It's amazing where

Go Get It will get you.

Go Get It

Find:

Search for:

C as a Phrase

Max wait:

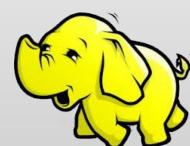
1996

1996

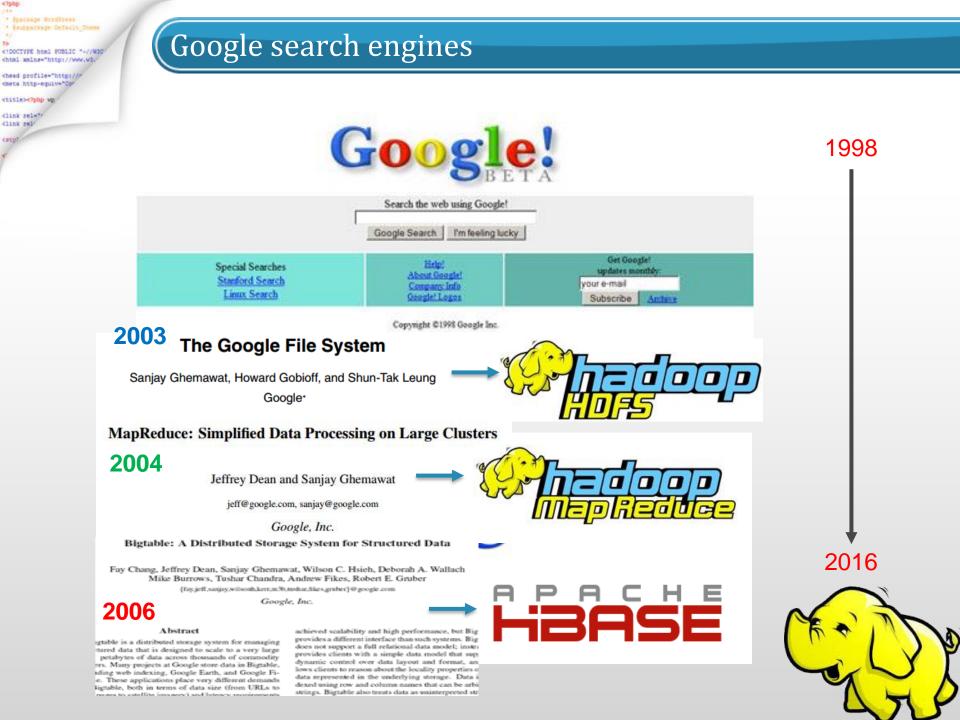
Enhance your search.

N Nover S100K

New Search . TopNews . Sites by Subject . Top 5% Sites . City Guide . Pictures & Sounds PeopleFind . Point Review . Road Maps . Software . About Lycos . Club Lycos . Help

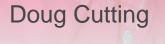

Add Your Site to Lycos

Copyright © 1996 Lycos³⁰, Inc. All Rights Reserved. Lycos is a trademark of Camegie Mellon University. Questions & Comments



1997

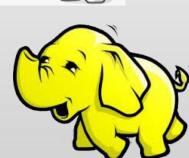
reference


cryp ref * fpackage HondFrees * fautpackage Defails_Theme */ 25 <100CTIFE hemi FOBLIC *-//NEG chimi suinge*Thttp://www.M2

chead profile="http:///
cmets http-equiv="Cp"

ctitle><?php : clink rel="" clink rel=""

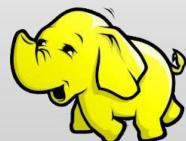
(Hadoop's Developers



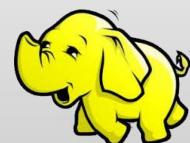
2005: Doug Cutting and Michael J. Cafarella developed Hadoop to support distribution for the <u>Nutch</u> search engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache Software Foundation.



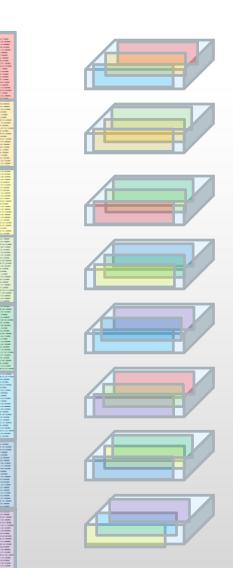
clink rel clink rel


What is Hadoop?

- <u>Hadoop:</u>
 - An open-source software framework that supports dataintensive distributed applications, licensed under the Apache v2 license.
- Goals / Requirements:
 - Data and Processing abstractions facilitate queries of large, dynamic, and rapidly growing data sets
 - Structured and non-structured data
 - Simple programming models
 - High scalability and availability
 - Use commodity (cheap!) hardware with little redundancy
 - Fault-tolerance
 - Move computation rather than data

clink rel

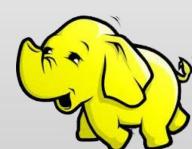
- Distributed, with some *modest* centralization
- Main nodes of cluster are where most of the computational power and storage of the system lies
- Main nodes run TaskTracker to accept and reply to MapReduce tasks, and also DataNode to store needed blocks closely as possible
- Central control node runs NameNode to keep track of HDFS directories & files, and JobTracker to dispatch compute tasks to TaskTracker
- Written in Java, also supports Python and Ruby


chi image: A second and a second and a second a seco

clink rel-

(Hadoop's Data Model

- 1. Given giant files
- Chops them up into good-sized chunks (64Mb)
- 3. Replicate and Distribute them


Hadoop's Distributed File System

Each chunk is replicated 3 times, and placed on a different processing node

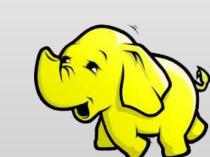
A name sever (actually 2) keeps track of where the chunks are

6	7
_	

link rela

dink rel

Hadoop's Processing Model


MapReduce

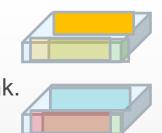
Distributed processing

Generally balanced, but no guarantees

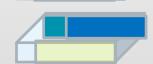
Processing occurs at the data source

Whenever we query the dataset, Its done in the following stages:

Map:

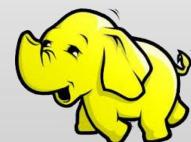

- 1. A processor is assigned to each chunk.
- 2. That processor scans, filters, and maps each data item into key-value pairs.
- 3. Keys are locally binned

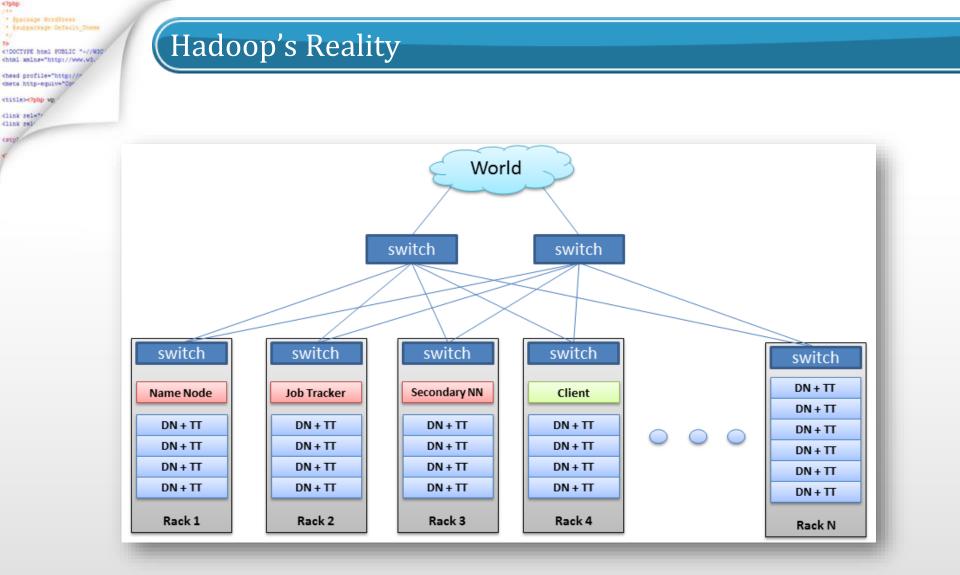
Shuffle:


4. Bins with common keys are consolidated by broadcasting them to a common node

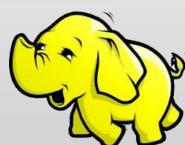
Reduce:

5. Final processing is done of within each bin, often agglomerative-like operations



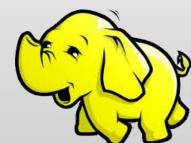


clink rel-


- <u>Hadoop Distributed FileSystem</u> (Chops up and distributes data)
- Tailored to needs of MapReduce
- Targeted towards many reads of file streams
- *Writes* are more costly
- High degree of data replication (3x by default)
- No need for RAID on normal nodes
- Large blocksize (64MB, bigger than database pages)
- Location awareness of DataNodes in network

Also need to keep track of:

- 1. Where the data chunks are
- 2. What the state of multiple MapReduce jobs are in
- 3. Redundancy in case there are either H/W or network issues



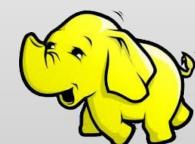
Hadoop's Architecture

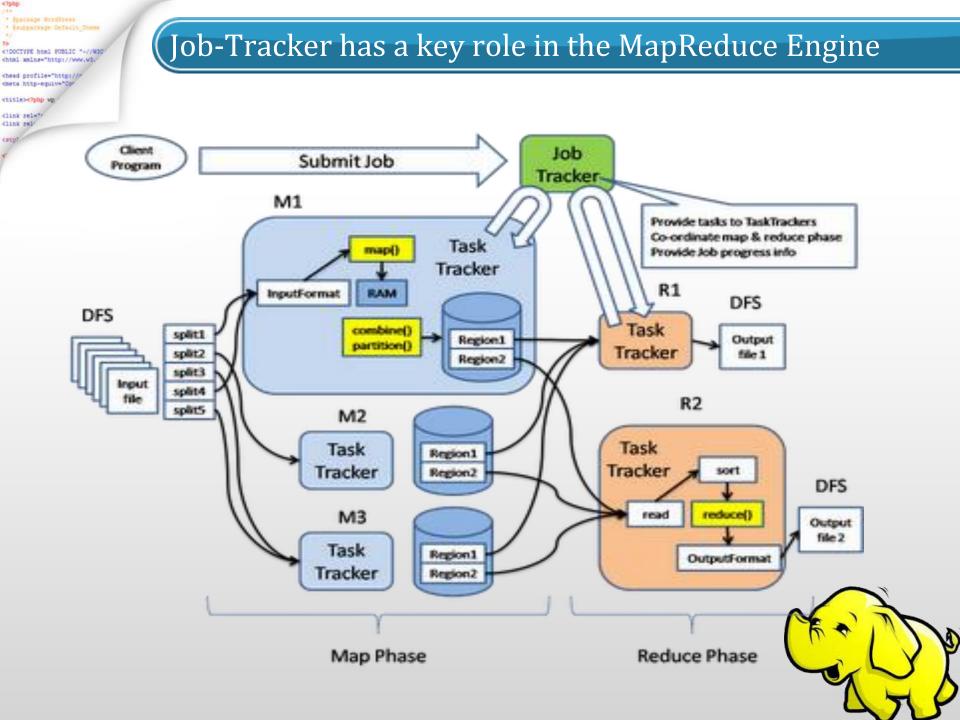
NameNode:

dlink rel dlink rel

- Stores metadata for the files, like the directory structure of a typical FS.
- The server holding the NameNode instance is quite crucial, so we keep a replicate.
- Transaction log for file deletes/adds, etc. Does not use transactions for whole blocks or file-streams, only metadata.
- Handles creation of more replica blocks when necessary after a DataNode failure

chead profile="http://" cheta http-equiv="Co"

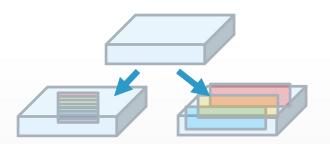

ctitle><?php clink rel="/ clink rel="/


Hadoop's Architecture

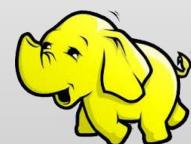
DataNode:

- Stores the actual data in HDFS
- Can run on any underlying filesystem (ext3/4, NTFS, etc)
- NameNode decides and tracks which blocks it has
- NameNode replicates blocks 3x
- Don't need to Homogenous
 - Different levels of performance
 - Different operating systems

/** * Tpackage Mondifers * Indepoilage Default_Theme */ 25 *(DOCTYPE him: FUBLIC *-//NIC Chimi mins="http://www.w2,*


chead profile="http://r chead http-equive"Cor

ctitle>Cphp : clink rel="" clink rel=""


(Hadoop's Architecture

MapReduce Engine:

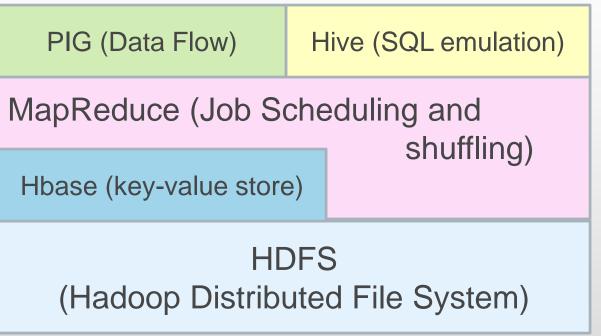
• JobTracker & TaskTracker

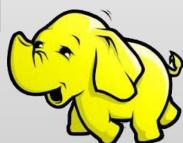
- JobTracker splits up data into smaller tasks("Map") and sends it to the TaskTracker process in each node
- TaskTracker reports back to the JobTracker node and reports on job progress, sends data ("Reduce") or requests new jobs
- You can have multiple of these, but only one is responsible for a given query

/**
* Typeskop HondPress
* Independence Default_Theme
*
25

/*/
CODCTYPE hemi PUBLIC *-//NOC

//NOC

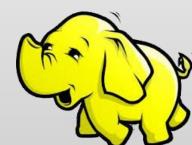

Cheed profile="http:/// csets http-equiv="Cp"

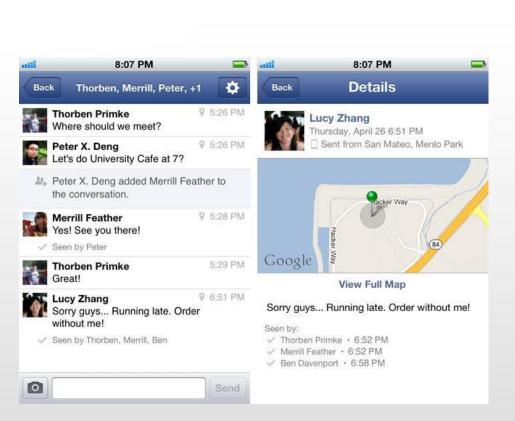

clink rel=""

(Hadoop Layer Cake

Most interaction with Hadoop is mediated by job managers using high-level APIs

- 1. PIG, a scripting language, with
 - FOREACH, GROUP, FILTER, and ORDER constructs
- 2. Hive, SQL syntax, declarative specification

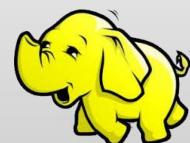



titleb-C?php

dlink rela dlink rel

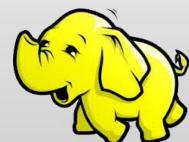
Hadoop in the Wild

- Hadoop is in use at most organizations that handle big data: ۲
 - Yahoo!
 - Facebook
 - o Amazon
 - Netflix Ο
 - o Etc...
- Some examples of scale:
 - Yahoo!'s Search Webmap runs on 10,000 core Linux cluster and powers Yahoo! Web search
 - FB's Hadoop cluster hosts 100+ PB of data (July, 2012) & growing at ¹/₂ PB/day (Nov, 2012)



Hadoop in the Wild

<loctTPE has PORIC "-//WE chai wins="http://www.wl. chead profile="http://w desca http=requive"Cor ctitle><?php wp click rel="" click rel="" carp!


- System requirements
 - High write throughput
 - Cheap, elastic storage
 - Low latency
 - High consistency (within a single data center good enough)
 - Disk-efficient sequential and random read performance

thead profile="http://" theta http-equiv="Cor

ctitle>C?php : clink rel="" clink rel=""

- Facebook's solution
 - Hadoop + HBase as foundations
 - Improve & adapt HDFS and HBase to scale to FB's workload and operational considerations
 - Major concern was availability: NameNode is SPOF & failover times are at least 20 minutes
 - Proprietary "AvatarNode": eliminates SPOF, makes HDFS safe to deploy even with 24/7 uptime requirement
 - Performance improvements for realtime workload: RPC timeout. Rather fail fast and try a different DataNode

