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• Not about size, but how data is managed

• Relational databases was all about organizing

data into tables

• Sometimes it is just too time consuming, or the 

data is just too big, to organize it in order to do 

simple queries

• Much data is unstructured or semi-structured

and we’d like to process it in parallel

• Data warehouses

BIG Data, how big is BIG?



Introduction

1. Introduction: Hadoop’s history and 
advantages

2. Architecture in detail

3. Hadoop in industry



What is Hadoop?

• Open-source implementation of a 

Map-Reduce framework for reliable, 

scalable, distributed computing and data 

storage.

• It is a flexible architecture for large scale 

computation and data processing on a 

network of commodity hardware.



Brief History of Hadoop

• Designed to answer the question: 

“How to process big data with 

reasonable cost and time?”
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Hadoop’s Developers

Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed 

Hadoop to support distribution for the Nutch search 

engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache 

Software Foundation.

http://en.wikipedia.org/wiki/Nutch


What is Hadoop?

• Hadoop: 

• An open-source software framework that supports data-

intensive distributed applications, licensed under the 

Apache v2 license.

• Goals / Requirements: 

• Data and Processing abstractions facilitate queries 

of large, dynamic, and rapidly growing data sets

• Structured and non-structured data

• Simple programming models

• High scalability and availability

• Use commodity (cheap!) hardware with little redundancy

• Fault-tolerance

• Move computation rather than data



Hadoop’s Architecture

• Distributed, with some modest centralization

• Main nodes of cluster are where most of the computational power 

and storage of the system lies

• Main nodes run TaskTracker to accept and reply to MapReduce

tasks, and also DataNode to store needed blocks closely as 

possible

• Central control node runs NameNode to keep track of HDFS 

directories & files, and JobTracker to dispatch compute tasks to 

TaskTracker

• Written in Java, also supports Python and Ruby



Hadoop’s Data Model

1. Given giant files

2. Chops them up into 

good-sized chunks 

(64Mb)

3. Replicate and

Distribute them

Hadoop’s

Distributed 

File 

System

Each chunk is replicated

3 times, and placed on

a different processing node

A name sever (actually 2)

keeps track of where the

chunks are



Hadoop’s Processing Model

Whenever we query the dataset,

Its done in the following stages:

Map:

1. A processor is assigned to each chunk.

2. That processor scans, filters, and

maps each data item into key-value

pairs.

3. Keys are locally binned

Shuffle:

4. Bins with common keys are

consolidated by broadcasting

them to a common node

Reduce:

5. Final processing is done of within

each bin, often agglomerative-like

operations

MapReduce

Distributed processing

Generally balanced, but

no guarantees

Processing occurs at the 

data source



Hadoop’s Architecture

• Hadoop Distributed FileSystem (Chops up and distributes data)

• Tailored to needs of MapReduce

• Targeted towards many reads of file streams

• Writes are more costly

• High degree of data replication (3x by default)

• No need for RAID on normal nodes

• Large blocksize (64MB, bigger than database pages)

• Location awareness of DataNodes in network



Hadoop’s Reality

Also need to keep track of:

1. Where the data chunks are

2. What the state of multiple MapReduce jobs are in

3. Redundancy in case there are either H/W or network issues 



Hadoop’s Architecture

NameNode:

• Stores metadata for the files, like the directory structure of a 

typical FS.

• The server holding the NameNode instance is quite crucial, 

so we keep a replicate. 

• Transaction log for file deletes/adds, etc. Does not use 

transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary 

after a DataNode failure



Hadoop’s Architecture

DataNode:

• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• NameNode decides and tracks which blocks it has

• NameNode replicates blocks 3x

• Don’t need to Homogenous

• Different levels of performance

• Different operating systems



Job-Tracker has a key role in the MapReduce Engine



Hadoop’s Architecture

MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and 

sends it to the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and 

reports on job progress, sends data (“Reduce”) or requests 

new jobs

• You can have multiple of these, but only one is responsible 

for a given query



MapReduce (Job Scheduling and

shuffling)

Hadoop Layer Cake 

HDFS

(Hadoop Distributed File System)

Hbase (key-value store)

PIG (Data Flow) Hive (SQL emulation)

Most interaction with Hadoop is mediated by job managers

using high-level APIs

1. PIG, a scripting language, with 

FOREACH, GROUP, FILTER, and ORDER constructs

2. Hive, SQL syntax, declarative specification



Hadoop in the Wild

• Hadoop is in use at most organizations that handle big data: 

o Yahoo! 

o Facebook

o Amazon

o Netflix

o Etc…

• Some examples of scale: 

o Yahoo!’s Search Webmap runs on 10,000 core Linux 

cluster and powers Yahoo! Web search 

o FB’s Hadoop cluster hosts 100+ PB of data (July, 2012) 

& growing at ½ PB/day (Nov, 2012)



Hadoop in the Wild

• System requirements

o High write throughput 

o Cheap, elastic storage

o Low latency

o High consistency (within a 

single data center good 

enough) 

o Disk-efficient sequential 

and random read 

performance



Hadoop in the Wild

• Facebook’s solution

o Hadoop + HBase as foundations

o Improve & adapt HDFS and HBase to scale to FB’s workload 

and operational considerations

 Major concern was availability: NameNode is SPOF & 

failover times are at least 20 minutes 

 Proprietary “AvatarNode”: eliminates SPOF, makes HDFS 

safe to deploy even with 24/7 uptime requirement

 Performance improvements for realtime workload: RPC 

timeout. Rather fail fast and try a different DataNode


