
Comp 521 – Files and Databases Fall 2016 1

Concurrency Control

Chapter 17

Comp 521 – Files and Databases Fall 2016 2

Conflict Serializable Schedules

 Recall conflicts (WR, RW, WW) were the cause of
sequential inconsistency

 Two schedules are conflict equivalent if:
 Involve the same actions over the same transactions

 Every pair of conflicting actions is ordered the same way

 A schedule is conflict serializable if it is conflict
equivalent to some serializable schedule

Comp 521 – Files and Databases Fall 2016 3

Example 1

 A non-serializable schedule that is also not
conflict serializable:

 The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B
Precedence graph

Comp 521 – Files and Databases Fall 2016 4

Example 2

 A serializable schedule that is not conflict serializable:

 Serializable because it is equiv to
T1, T2, T3, or T2, T1, T3

 Not conflict serializable, because the ordering:
R1(A),W2(A),W1(A),W3(A)

is not consistent with any ordering, but conflict equivalent

 Importance of this distinction is that it can be proven that
Strict 2PL permits only conflict serializable schedules

T1: R(A), W(A), C
T2: W(A), C
T3: W(A), C

T1

T2

T3

Comp 521 – Files and Databases Fall 2016 5

Review: Strict 2PL

 Strict Two-phase Locking (Strict 2PL) Protocol:
 Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on object
before writing.

 All locks held by a transaction are released when the
transaction completes

 If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

 Strict 2PL allows only schedules whose
precedence graph is acyclic (a DAG)

Comp 521 – Files and Databases Fall 2016 6

Two-Phase Locking (2PL)

 Two-Phase Locking Protocol

 Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing.

 A transaction can release its locks once it has performed its
desired operation (R or W). A transaction cannot request
additional locks once it releases any locks.

 If an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

 Note: locks can be released before Xact completes
(commit/abort), thus relaxing Strict 2PL. 2PL starts with a
“growing” phase, where locks are requested followed by a
“shrinking” phase, where locks are released

Comp 521 – Files and Databases Fall 2016 8

Lock Management

 Lock and unlock requests are handled by the
database’s lock manager

 Lock table entry (per table, record, or index):

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking must be atomic

 Lock upgrades: transaction that holds a shared
lock can be upgraded to hold an exclusive lock

Comp 521 – Files and Databases Fall 2016 9

Deadlocks

Deadlock: Cycle of transactions waiting
for locks to be released by each other.

Relatively rare schedules lead to
deadlock

Two ways of dealing with deadlocks:

 Deadlock detection

 Deadlock prevention

Comp 521 – Files and Databases Fall 2016 10

Deadlock Detection

 Create a waits-for graph:

 Nodes are transactions

 Edge from Ti to Tj indicates Ti is waiting
for Tj to release a lock

 DBMS periodically checks for cycles in the waits-for graph

 ex: T1: A = f(B), T2: B = g(C) , T3: C = h(A), arriving T1,T3,T2

T1: S(B),R(B), X(A),…
T2: S(C),R(C),X(B),…
T3: S(A),R(A), X(C),…

T1

T2 T3

Comp 521 – Files and Databases Fall 2016 11

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)…
T2: X(B),W(B) X(C)…
T3: S(C), R(C)
T4: X(B)…

T1 T2

T4 T3

T1 T2

T4 T3

X(A)

Comp 521 – Files and Databases Fall 2016 12

Deadlock Prevention

 When there is high contention for locks, detection
and aborting can hurt performance

 Assign priorities (eg. based on a Xact’s duration
using timestamps). Assume Ti wants a lock that Tj
holds.

 Two policies are possible:
 Wait-Die: If Ti has higher priority, Ti waits for Tj; otherwise

abort Ti (wait only if higher priority)

 Wound-wait: If Ti has higher priority, abort Tj; otherwise Ti
waits (preempt lower priorities)

 When Ti re-starts, it retains its original timestamp,
thus moves up the priority list

Comp 521 – Files and Databases Fall 2016 17

Dynamic Databases

 With fine-grain locks, even Strict 2PL will not assure
serializability:
 T1 locks all pages that currently contain sailors records with

rating = 1, and finds oldest sailor (say, age = 71).

 Next, T2 inserts a new sailor; rating = 1, age = 96. (added to a
page that previously had no sailor with rating 1, such pages
are not locked)

 T2 also deletes oldest sailor with rating = 2 (and, say, age =
80), and commits. (these aren’t locked, and T2 commits)

 T1 now locks all pages containing sailor records with rating
= 2, and finds oldest (say, age = 63).

 No consistent DB state where T1 is “correct”!

 Locking pages based on a selection is called a
“predicate” lock

Comp 521 – Files and Databases Fall 2016 18

The Problem

 T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.

 Assumption only holds if no sailor records are
added while T1 is executing!

 Need some mechanism to enforce this
assumption. (Index locking and predicate
locking.)

 Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

Comp 521 – Files and Databases Fall 2016 19

Index Locking

 If there is a dense index on the rating field
using Alternative (2), T1 should lock the
index page containing the data entries with
rating = 1.

 If there are no records with rating = 1, T1 must
lock the index page where such a data entry would
be, if it existed!

 If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no
new records with rating = 1 are added.

r = 1
Data

Index

Comp 521 – Files and Databases Fall 2016 20

Predicate Locking

 Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

 Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

 What is the predicate in the sailor example?

 In general, predicate locking has a lot of
overhead, and is seldom implemented.

Comp 521 – Files and Databases Fall 2016 30

Summary

 There are several lock-based concurrency
control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

 The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

 Naïve locking strategies may have the
phantom problem

Comp 521 – Files and Databases Fall 2016 31

Summary (Contd.)

 Index locking is common, and affects
performance significantly.
 Needed when accessing records via index.

 Needed for locking logical sets of records (index
locking/predicate locking).

 Tree-structured indexes:
 Straightforward use of 2PL very inefficient.

 In practice, better techniques now known; do
record-level, rather than page-level locking.

