
Comp 521 – Files and Databases Fall 2016 1

Overview of
Transaction Management

Chapter 16

Comp 521 – Files and Databases Fall 2016 2

Database Transactions

 A transaction is the DBMS’s abstract view of a
user program: a sequence of database commands;
disk reads and writes.

 Concurrent execution of user programs is essential for
good DBMS performance.
 Because disk accesses are frequent, and relatively slow, it is

important to keep the cpu busy by working on several user
programs concurrently.

 A user’s program may carry out many consecutive
operations on the data retrieved from the database, but
the DBMS is only concerned about what data is
read/written from/to the database.

Comp 521 – Files and Databases Fall 2016 3

ACID Properties of Transactions

 Atomic: the end effect of a transaction should be all or
nothing. Either it is executed to completion, or it is as
if it never happened. (DBMS provides this)

 Consistency: Every transaction must preserve all
constraints of the database. (User and DBMS)

 Isolation: The result of a transaction should give
predictable results regardless of any concurrent
transactions. (DBMS)

 Durability: Transactions must tolerate crashes and
being aborted before completion allowing the
database to be recoverable to a consistent state.
(DBMS)

Comp 521 – Files and Databases Fall 2016 4

Concurrency in a DBMS

 Users submit a transaction, and can think of it as
executing by itself on the database.
 Concurrency is provided by the DBMS, which interleaves the

actions (reads/writes) of many transactions.

 Each transaction must leave the database in a consistent state
if the DB was consistent when the transaction began.

 DBMSs only enforce Integrity Constraints

 Beyond this, the DBMS does not understand the data.
(e.g., it does not understand how interest on a bank account is
computed).

 Issues: Effect of interleaving transactions and crashes.

Comp 521 – Files and Databases Fall 2016 5

Interleaving’s Impact

 Interleaving improves database performance
 While one transaction waits for pages to be read from disk,

the CPU processes other transactions. I/Os proceed in parallel
with CPU activity
(greater system utilization)

 Increased system throughput (transactions/sec)

 More “fair” than true sequential access; allows all pending
transactions to make progress (heavy transactions, don’t
starve out light ones)

 Predictable latency (delay from request to completion)

 However, interleaving can lead to anomalies
 Sequential inconsistency

Comp 521 – Files and Databases Fall 2016 6

Example

 Consider two transactions (Xacts):

T1: BEGIN C=C+100, S=S-100 END
T2: BEGIN C=1.02*C, S=1.04*S END

 Intuitively, the first transaction is transferring $100
from a savings to a checking account. The second is
crediting both accounts interest payments.

 There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together.
However, the net effect must be equivalent to some
execution of these two transactions run sequentially.

Comp 521 – Files and Databases Fall 2016 7

All Schedules are not Equal

 Consider a possible interleaving (schedule):

T1: C=C+100, S=S-100
T2: C=1.02*C, S=1.04*S

 This is OK. But what about:

T1: C=C+100, S=S-100
T2: C=1.02*C, S=1.04*S

 The DBMS’s view of the second schedule:

T1: R1(C), W1(C), R1(S), W1(S)
T2: R2(C), W2(C), R2(S), W2(S),

Comp 521 – Files and Databases Fall 2016 8

Scheduling Transactions

 Serial schedule: Schedule that does not interleave the
actions of different transactions. Too rigid, creates
bottlenecks, reduces performance

 Equivalent schedules: For any database state, the effect
(on the set of objects in the database) of executing the
first schedule is identical to the effect of executing the
second schedule.

 Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule also preserves consistency.)

Comp 521 – Files and Databases Fall 2016 9

Atomicity of Transactions

 An important property guaranteed by the
DBMS is that transactions are atomic. That is, a
user can think of a Xact as either always
executing all its actions in one step, or not
executing any actions at all.

 A transaction might commit after completing all
its actions, or it could abort (or be aborted by the
DBMS) after executing some actions.

 DBMS logs all actions so that it can undo aborted
transactions.

Comp 521 – Files and Databases Fall 2016 10

The 3 Classes of Anomalies

 Reading Uncommitted Data--
Write-Read (WR) Conflict, “dirty reads”:

 Unrepeatable Reads--
Read-Write (RW) Conflict:

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), R(B), W(B), C,

T1: R(A), W(A), R(B), W(B), C
T2: R(A), W(A), R(B), W(B), C,

Comp 521 – Files and Databases Fall 2016 11

Anomalies (Continued)

 Overwriting Uncommitted Data
Write-Write (WW) Conflict, “blind write”:

 All 3 anomalies involve at least one write

 How do we avoid these?

T1: W(A), W(B), C
T2: W(A), W(B), C

T1’s write of A is lost

Comp 521 – Files and Databases Fall 2016 12

Lock-Based Concurrency Control
 Strict Two-phase Locking (Strict 2PL) Protocol:

 Each Xact must obtain a shared (S) lock on object
before reading, and an exclusive (X) lock on object
before writing. (of course, you can both read and
write an object with an X lock)

 All locks held by a transaction are released when
the transaction completes (at Commit or Abort)

 If an Xact holds an X lock on an object, no other
Xact can get either an S or X lock on that object.

 Strict 2PL allows only serializable schedules.
 Additionally, it simplifies aborts (more soon)

Comp 521 – Files and Databases Fall 2016 13

Examples

 Common case: Xacts affect different parts of
db. T1: B = f(B, A), T2: C = g(C, A)

 Hot spots: Xacts reference a common record.
T1: A = f(A), T2: B = f(B,A)

T1: S(A), R(A), X(B), R(B), W(B),C
T2: S(A), R(A), X(C), R(C), W(C), C

T1: X(A), R(A), W(A), C
T2: S(A), … R(A), X(B), R(B), W(B), C

T1: X(A), … R(A), W(A), C
T2: S(A), R(A), X(B), R(B), W(B), C

Waiting for lock X(A)

to be released

Waiting for lock S(A)

to be released

Comp 521 – Files and Databases Fall 2016 14

Deadlocks

 Transactions request exclusive access to a common
locked record. T1: B = f(B, A), T2: A = g(A, B)

 A rare unfortunate ordering, where both
transactions wait, and make no progress

 Soln: DBMS monitors how long a transaction has
been waiting and aborts it, thus freeing its locks

T1: S(A),R(A),X(B),R(B), W(B),C
T2: S(B),… R(B),X(A),R(A),W(A),C

T1: S(A),R(A), X(B),…
T2: S(B),R(B), X(A), …

Abort

X(A), R(A), W(A), C

Comp 521 – Files and Databases Fall 2016 15

Aborting a Transaction

 If a transaction Ti is aborted, all its actions have to be
undone. Not only that, if Tj reads an object last
written by Ti, Tj must be aborted as well!

 Releasing transaction locks only on commit/abort
avoids cascading aborts (abort handling is simplified)

 If Ti writes an object, Tj can read it only after Ti frees lock.

 In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded. This mechanism is also used to recover
from system crashes: all active Xacts at the time of the
crash are aborted when the system comes back up.

Comp 521 – Files and Databases Fall 2016 16

Transactions in SQL

 Transactions begin on any statement that references
a table (CREATE, UPDATE, SELECT, INSERT, etc.)

 Transactions end when either a “COMMIT” or
“ROLLBACK” (Abort) command is reached

 SQL provides a “SAVEPOINT name” to break up
transactions into intermediate pieces, which can be
gotten back to using

“ROLLBACK TO SAVEPOINT name”

 Operations between 2 savepoints are handled as
separate Xactions, in terms of concurrency control

Comp 521 – Files and Databases Fall 2016 17

The Log

 The following actions are recorded in the log:

 Ti writes an object: the old value and the new value.

 Ti commits/aborts: a log record indicating this action.

 Log records are chained together by Xact id, so it’s
easy to undo a specific Xact.

 All log related activities (and in fact, all
concurrency-control related activities such as
lock/unlock, dealing with deadlocks etc.) are
handled transparently by the DBMS.

 Complication: committed writes might be held in
the buffer pool

Comp 521 – Files and Databases Fall 2016 18

Recovering From a Crash

 There are 3 phases in the Aries recovery algorithm:

 Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were in progress,
and all dirty pages in the buffer pool at crash time

 Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

 Undo: The writes of all Xacts that were in progress at crash
time are undone (by restoring the old value of the data,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

Comp 521 – Files and Databases Fall 2016 19

Summary
 Concurrency control and recovery are among the

most important functions provided by a DBMS.

 Users need not worry about concurrency.

 System automatically inserts lock/unlock requests and
schedules actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

 Write-ahead logging (WAL) is used to undo the
actions of aborted transactions and to restore the
system to a consistent state after a crash.

 Consistent state: Only the effects of commited Xacts seen.

