

Schema Refinement and Normal Forms

Chapter 19

PS4 posted, Midterm #2 Postponed until 11/11

The Evils of Redundancy

- * *Redundancy* is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- ❖ Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

- * A <u>functional dependency</u> $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R:
 - for all $t_1 \in r$, $t_2 \in r$, $\pi_X(t_1) = \pi_X(t_2)$ implies $\pi_Y(t_1) = \pi_Y(t_2)$
 - i.e., given two tuples in *r*, if the X values match, then the Y values must also match. (X and Y are *sets* of attributes.)
- ❖ An FD is a statement about *all* allowable relations.
 - Must be identified based on semantics of application.
 - Given some allowable instance r_1 of R, we can check if it violates some FD f, but we cannot tell if f holds over R!
- \star K is a candidate key for R means that K \rightarrow R
 - However, $K \rightarrow R$ does not require K to be *minimal*!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps: Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- * *Notation*: We will denote this relation schema by listing the attributes as a single letter: SNLRWH
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines hrly_wages: R → W

Example (Contd.)

- Problems due to $R \rightarrow W$:
 - <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNLRWH?
 - *Insertion anomaly*: What if we want to insert an employee and don't know the hourly wage for his rating?
 - Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Will 2 smaller tables be better?

Hourly_Emps

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps2

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

R	W		
8	10		
5	7		

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $zip \rightarrow state$, $state \rightarrow senator$ implies $zip \rightarrow senator$
- ❖ An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
 - $F^+ = closure \ of \ F$ is the **set of all FDs** that are implied by F.
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If $X \subseteq Y$, then $Y \rightarrow X$
 - *Augmentation*: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These are *sound* and *complete* inference rules for FDs!
 - sound: they will generate only FDs in F⁺
 - *complete*: repeated applications will generate all FDs in F⁺

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - *Union*: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- Example: Contracts(<u>cid</u>, sid, jid, did, pid, qty, value), and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Projects purchase each part using single contract: JP → C
 - Dept purchase at most one part from a supplier: $SD \rightarrow P$
- \star JP \rightarrow C, C \rightarrow CSJDPQV imply JP \rightarrow CSJDPQV
- $*SD \rightarrow P$ implies $SDJ \rightarrow JP$
- * SDJ \rightarrow JP, JP \rightarrow CSJDPQV imply SDJ \rightarrow CSJDPQV

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- * Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X⁺) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X⁺

Algorithm for test if FD is in F⁺

```
⋄ Given X \rightarrow Y

closure = X;

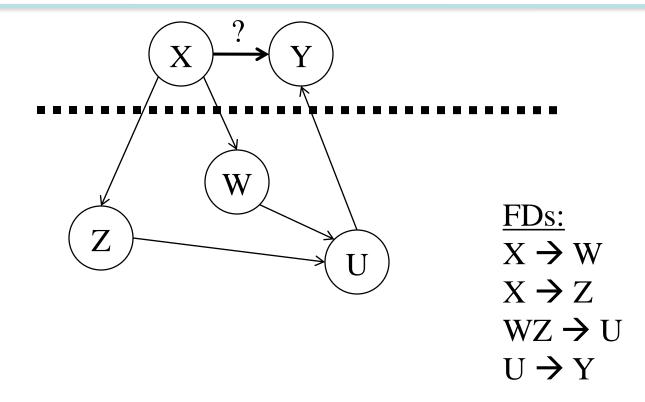
repeat \{

if there is an FD U \rightarrow in F such that U ⊆ closure:

closure = closure \cup V
{} until closure does not change
```

- \diamond Consider X \rightarrow Y as a graph with X and Y as nodes and a directed edge from X to Y.
- Traverse the set of *given* FDs to extend all existing paths
- * When the path can be extended no farther determine if there is a path from $X \rightarrow Y$

Example Check



- ❖ Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Normal Forms

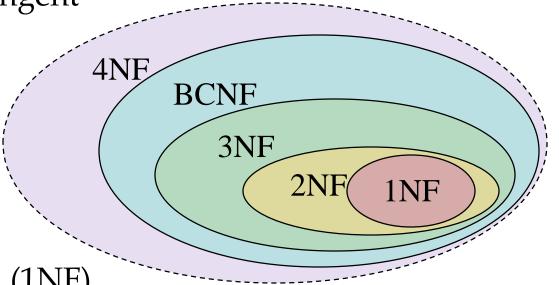
- To eliminate redundancy and potential update anomalies, one can identify generic templates called "normal forms"
- ❖ If a relation is in a certain *normal form* (Boyce-Codd Normal Form (BCNF), third normal form (3NF) etc.), it is known that certain kinds of redundancy are avoided/minimized.
- * This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Normal Form Hierarchy

An increasingly stringent

hierarchy of "Normal Forms"

 Each outer form trivially satisfies the requirements of inner forms



- * The 1st normal form (1NF) is part of the definition of the relational model. Relations must be sets (unique) and all attributes atomic (not multiple fields or variable length records).
- * The 2^{nd} normal form (2NF) requires schemas not have any FD, X \rightarrow Y, where X as a strict subset of the schema's key.

Boyce-Codd Normal Form (BCNF)

- * Relation R with FDs F is in BCNF if, for all X \rightarrow A in F⁺
 - $A \in X$ (called a *trivial* FD), or \rightarrow
 - X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- BCNF considers all domain keys, not just the primary one
- BCNF schemas do not contain redundant information that arise from FDs

Includes silly FDs like: $(city, state) \rightarrow state$

BCNF Examples

- In BCNF
 Person(<u>First</u>, <u>Last</u>, Address, Phone)

 Functional Dependencies: FL → A, FL → P
- Not in BCNF
 Person(<u>First</u>, <u>Last</u>, Address, Phone, <u>Email</u>)
 An attempt to allow a person to have multiple emails.
 Functional Dependencies: FL → A, FL → P

Third Normal Form (3NF)

- * Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial* FD), or
 - X contains a key for R, or
 - A is part of some key for R.
- Minimality of a key is crucial in third condition above!
- ❖ If R is in BCNF, it is trivially in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good" decomp, or performance considerations).

3NF Examples

- Phonebook where friends have multiple addresses
- In 3NF, not in BCNF
 Person(<u>First</u>, <u>Last</u>, <u>Addr</u>, Phone)
 Functional Dependencies:
 FLA → P, P → A

Not in 3NF or BCNF
 Person(<u>First</u>, <u>Last</u>, <u>Addr</u>, Phone, Mobile)
 Functional Dependencies:
 FLA → P, P → A, FL → M

What Does 3NF Achieve?

- * If 3NF is violated by $X \rightarrow A$, one of the following holds:
 - X is a proper subset of some key K (partial dependency)
 - We store (X, A) pairs redundantly.
 - X is not a proper subset of any key (transitive dependency).
 - There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
- But, even if relation is in 3NF, problems can arise.

Lingering 3NF Redundancies

Revisiting an old Schema
 Reserves(Sailor, Boat, Date, CreditCardNo)
 FDs: SBD→SBDC, C→S

- In 3NF, but database likely stores many redundant copies of the (C, S) tuple
- Thus, 3NF is indeed a compromise relative to BCNF.

Decomposition of a Relation Scheme

- * Suppose that relation R contains attributes *A1* ... *An*. A <u>decomposition</u> of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
- * E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

- Decompositions should be used only when needed.
 - SNLRWH has FDs S \rightarrow SNLRWH and R \rightarrow W
 - Second FD violates 3NF
 (R is not a key, W is not part of a key)
 - Redundancy: W values repeatedly associated with R values.
 - Easiest fix; create a relation RW to store these associations, and to remove W from the main schema:
 - i.e., we decompose SNLRWH into SNLRH and RW
- Given SNLRWH tuples, we just store the projections SNLRH and RW, are there any potential problems that we should be aware of?

Problems with Decompositions

- There are three potential problems to consider:
 - Problem 1) Some queries become more expensive.
 - e.g., How much did Joe earn? (salary = W*H)
 - Problem 2) Given instances of the decomposed relations, we may not be able to reconstruct the corresponding original relation!
 - Fortunately, not in the SNLRWH example.
 - Problem 3) Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- * <u>Tradeoff</u>: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- ❖ Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - $\blacksquare \quad \pi_{X}(r) \bowtie \pi_{Y}(r) = r$
- * It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$
 - In general, the other direction does not hold!
 If equal, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- * It is essential that all decompositions used to eliminate redundancy be lossless! (Avoids Problem 2)

More on Lossless Join

- * The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$

(in other words the attributes common to X and Y must contain a key for either X or Y)

❖ In particular, the decomposition of R into UV and R - V is lossless-join if U → V holds over R.

AB	$C \Rightarrow$	AB	, BC	A	В
			, -	1	2
A	D]	4	2 5
A	В	C		7	2
1	2 5	3		L'	<u> </u>
4	5	6	V	В	C
7	2	8			
			l	2	3
			1	2 5	6
A	B	C		2	8
1	2	3		<u> </u>	
4	2 5	6	//		
7	2	8			
1	2	O			

Not lossless

More on Lossless Join

- * The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$

(in other words the attributes common to X and Y must contain a key for either X or Y)

❖ In particular, the decomposition of R into UV and R - V is lossless-join if U → V holds over R.

A	ВС	$C \Rightarrow$	AB	, AC	A	В
				,	1	2
	1	В	C		4	5
I	7	_			7	2
	_	2 5	3		\triangleright	\triangleleft
4	-	5	6	V	A	C
7	7	2	8		1	3
					4	6
					7	8
F	4	В	C			
1		2	3			
4	ļ.	5	6			

Lossless

Dependency Preserving Decomposition

Contracts(<u>Cid</u>, Sid, Jid, Did, Pid, Qty, Value)

- * Consider CSJDPQV, C is key, JP \rightarrow C and SD \rightarrow P.
 - BCNF decomposition: <u>CSJDQV</u> and <u>SDP</u>
 - Problem: Checking JP → C requires a join!
- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (*Avoids Problem 3 on slide 21*)
- * *Projection of set of FDs F*: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs U \rightarrow V in F⁺ (*closure of F*) such that U, V are in X.

- * Decomposition of R into X and Y is <u>dependency preserving</u> if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F +.
- ❖ MUST consider F+, (not just F), in this definition:
 - ABC, A \rightarrow B, B \rightarrow C, C \rightarrow A, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- Dependency preserving does not imply lossless join:
 - ABC, A \rightarrow B, decomposed into AB and BC.
- And vice-versa!

Decomposition into BCNF

- Consider relation R with FDs F.
 - If $X \rightarrow Y$ violates BCNF, decompose R into R Y and $\underline{X}Y$.
 - Repeated applications of this rule gives relations in BCNF; lossless join decomposition, and is guaranteed to terminate.
- **❖** Example: <u>CSJDPQV</u>, SD → P, J → S (new), (ignoring JP → C for now)
 - To deal with SD \rightarrow P, decompose into <u>SD</u>P, <u>CSJDQV</u>.
 - To deal with J → S, decompose <u>CSJDQV</u> into <u>IS</u> and <u>CJDQV</u>
- The order in which we process violations can lead to a different set of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can't decompose while preserving 1st FD; not in BCNF.
- ❖ Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs: JP → C, SD → P and J → S).
 - However, it is a lossless join decomposition.
 - In this case, adding <u>IPC</u> to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (Adds Redundancy!)

Decomposition into 3NF

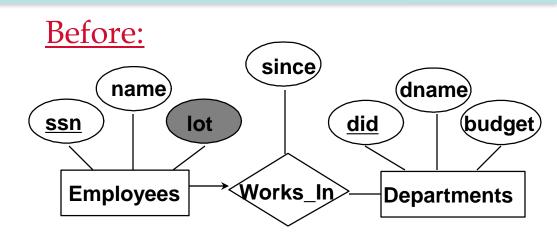
- * Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, it can stop earlier).
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to "preserve" JP \rightarrow C. What if we also have J \rightarrow C?
- * Refinement: Instead of the given set of FDs F, use a *minimal cover for F*.

Minimal Cover for a Set of FDs

- ❖ Properties of a <u>Minimal cover</u>, G, for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting a FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and is "as small as possible" in order to get the same closure as F.
- * e.g., A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG has the following minimal cover:
 - A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H
- \bullet M.C. \rightarrow Lossless-Join, Dep. Pres. Decomp!!!

Refining an Entities and Relations

- 1st diagram translated: EmpWorksIn(S,N,L,D,C)
 Dept(D,M,B)
 - Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: D → L
- And Employees start their new lot at a given date: SL→C
- Redundancy is fixed by: Emp(<u>S</u>,N) WorksIn(<u>S</u>,<u>L</u>,<u>D</u>,C) (note 3NF) Dept(<u>D</u>,M,B)
- ❖ Enforcement of FD: D → L is supported by DeptLot(\underline{D} , \underline{L})



Summary of Schema Refinement

- ❖ If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- ❖ If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a losslessjoin, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.