
Comp 521 – Files and Databases Fall 2012 1

SQL: Advanced Queries

Chapter 5.4-5.5

Comp 521 – Files and Databases Fall 2012 2

SQL’s Aggregate Operators

 Significant extension of
relational algebra.

 Computation and
summarization operations

 Appears in target-list of query

 Results aggregate rather
than appear individually

 E.x. How many instances in the sailor relation?

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT COUNT (*)
FROM Sailors S

single column

Comp 521 – Files and Databases Fall 2012 3

More examples

 Average age of Sailors with a rating of 10?

 Names of all Sailors who have
achieved the maximum rating

SELECT AVG(S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating=(SELECT MAX(S2.rating)

FROM Sailors S2)

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

Comp 521 – Files and Databases Fall 2012 4

More examples (cont)

 How many distinct ratings for Sailors less
than 40 years of age?

 How many reservations were made
by Sailors less than 40 years old?

SELECT COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND S.age < 40

SELECT COUNT(DISTINCT S.rating)
FROM Sailors S
WHERE S.age < 40.0

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

Comp 521 – Files and Databases Fall 2012 5

Find name and age of the oldest sailor(s)

 The first query is
incorrect! (Switch the
MAX to MIN to see)

 The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard, but
is not supported in some
systems.

SELECT S.sname, MAX(S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX(S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

Comp 521 – Files and Databases Fall 2012 6

Motivation for Grouping

 So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to subgroups.

 Consider: Find the age of the youngest sailor for each
rating level.

 In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!

 Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Comp 521 – Files and Databases Fall 2012 7

Queries With GROUP BY and HAVING

 The target-list contains
(i) attribute names
(ii) terms with aggregate operations (e.g., MIN (S.age)).

 The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A group
is a set of tuples that have the same value for all attributes in
grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Comp 521 – Files and Databases Fall 2012 8

Conceptual Evaluation

 The cross-product of relation-list is computed, tuples
that fail qualification are discarded, unnecessary fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

 The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!

 In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

 One answer tuple is generated per qualifying group.

Comp 521 – Files and Databases Fall 2012 9

Find age of the youngest sailor with age ≥ 18,
for each rating with at least 2 such sailors

rating minage

3 25.5

7 35.0

8 25.5

SELECT S.rating,
MIN (S.age) AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

Sailors instance:

Comp 521 – Files and Databases Fall 2012 10

rating minage

3 25.5

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Find age of the youngest sailor with age ≥ 18,
for each rating with at least 2 such sailors

Comp 521 – Files and Databases Fall 2012 11

Find age of the youngest sailor with age ≥ 18, for each
rating level with at least 2 such sailors, and where
every sailor is under 60.

rating minage

7 35.0

8 25.5

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

HAVING COUNT (*) > 1 AND MAX(S.age) < 60

Comp 521 – Files and Databases Fall 2012 12

Find age of the youngest sailor with age ≥ 18, for
each rating with at least 2 sailors between 18 and 60.

rating minage

3 25.5

7 35.0

8 25.5

SELECT S.rating, MIN (S.age)
AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

Sailors instance:

Comp 521 – Files and Databases Fall 2012 13

For each red boat, find the number of
reservations for this boat

 Grouping over a join of three relations.

 What do we get if we remove B.color=‘red’
from the WHERE clause and add a HAVING

clause with this condition?

 What if we drop Sailors and the condition
involving S.sid?

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Comp 521 – Files and Databases Fall 2012 14

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

 Shows HAVING clause can also contain a subquery.

 Compare this with the query where we considered
only ratings with 2 sailors over 18!

 What if HAVING clause is replaced by:

 HAVING COUNT(*) >1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

Comp 521 – Files and Databases Fall 2012 15

Find those ratings for which the average
age is the minimum over all ratings

 Aggregate operations cannot be nested! WRONG:

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

 Correct solution (in SQL/92):

Comp 521 – Files and Databases Fall 2012 16

Summary

 SQL was an important factor in the early acceptance
of the relational model; more natural than earlier,
procedural query languages.

 Relationally complete; in fact, significantly more
expressive power than relational algebra.

 Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

 Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.
 In practice, users need to be aware of how queries are

optimized and evaluated for best results.

