

SQL: Advanced Queries

Chapter 5.4-5.5

[&]quot;The revolution has been postponed . . . We've discovered a leak."

Comp 521 - Files and Databases

single column

SQL's Aggregate Operators

- Significant extension of relational algebra.
- Computation and summarization operations
- Appears in *target-list* of query
- Results *aggregate* rather than appear individually
- * E.x. How many instances in the sailor relation?

SELECT COUNT (*) FROM Sailors S

Comp 521 - Files and Databases

COUNT (*) COUNT ([DISTINCT] A) SUM ([DISTINCT] A) AVG ([DISTINCT] A) MAX (A) MIN (A)

More examples

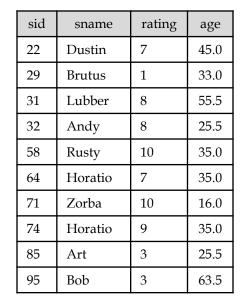
Average age of Sailors with a rating of 10?

SELECT AVG(S.age) FROM Sailors S WHERE S.rating=10

Names of all Sailors who have achieved the maximum rating

SELECT S.sname FROM Sailors S WHERE S.rating=(SELECT MAX(S2.rating) FROM Sailors S2)

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5


More examples (cont)

How many distinct ratings for Sailors less than 40 years of age?

> SELECT COUNT(DISTINCT S.rating) FROM Sailors S WHERE S.age < 40.0

How many reservations were made by Sailors less than 40 years old?

> SELECT COUNT(*) FROM Sailors S, Reserves R WHERE S.sid = R.sid AND S.age < 40

Find name and age of the oldest sailor(s)

- The first query is incorrect! (Switch the MAX to MIN to see)
- The third query is equivalent to the second query, and is allowed in the SQL/92 standard, but is not supported in some systems.

SELECT S.sname, MAX(S.age) FROM Sailors S

SELECT S.sname, S.age FROM Sailors S WHERE S.age = (SELECT MAX(S2.age) FROM Sailors S2)

SELECT S.sname, S.age FROM Sailors S WHERE (SELECT MAX (S2.age) FROM Sailors S2) = S.age

Motivation for Grouping

- So far, we've applied aggregate operators to *all* (qualifying) tuples. Sometimes, we want to apply them to *subgroups*.
- Consider: Find the age of the youngest sailor for each rating level.
 - In general, we don't know how many rating levels exist, and what the rating values for these levels are!
 - Suppose we know that rating values go from 1 to 10; we can write 10 queries that look like this (!):

For *i* = 1, 2, ..., 10:

SELECT MIN (S.age) FROM Sailors S WHERE S.rating = *i*

Fall 2012

Queries With GROUP BY and HAVING

SELECT[DISTINCT] target-listFROMrelation-listWHEREqualificationGROUP BYgrouping-listHAVINGgroup-qualification

- The *target-list* contains
 - (i) <u>attribute names</u>
 - (ii) terms with aggregate operations (e.g., MIN (*S.age*)).
- The <u>attribute list (i)</u> must be a subset of *grouping-list*. Intuitively, each answer tuple corresponds to a *group*, and these attributes must have a single value per group. (A *group* is a set of tuples that have the same value for all attributes in *grouping-list*.)
 Comp 521 - Files and Databases

Conceptual Evaluation

- The cross-product of *relation-list* is computed, tuples that fail *qualification* are discarded, *unnecessary* fields are deleted, and the remaining tuples are partitioned into groups by the value of attributes in *grouping-list*.
- The group-qualification is then applied to eliminate some groups. Expressions in group-qualification must have a <u>single value per group</u>!
 - In effect, an attribute in *group-qualification* that is not an argument of an aggregate op also appears in *grouping-list*. (SQL does not exploit primary key semantics here!)

One answer tuple is generated per qualifying group.

Find age of the youngest sailor with age ≥ 18 , for each rating with at least 2 <u>such</u> sailors

SELECT S.rating,
MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT $(*) > 1$

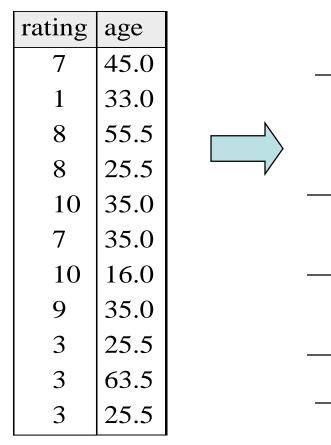
Answer relation:

rating	minage
3	25.5
7	35.0
8	25.5

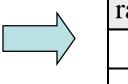
Sailors instance:

sid	sname	rating	age
22	dustin	7	45.0
29	brutus	1	33.0
31	lubber	8	55.5
32	andy	8	25.5
58	rusty	10	35.0
64	horatio	7	35.0
71	zorba	10	16.0
74	horatio	9	35.0
85	art	3	25.5
95	bob	3	63.5
96	frodo	3	25.5

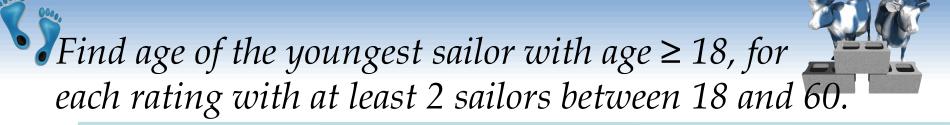
Find age of the youngest sailor with age ≥ 18 , for each rating with at least 2 <u>such</u> sailors


rating	age		rating	age	
7	45.0		1	33.0	
1	33.0		3	25.5	
8	55.5		3	63.5	
8	25.5	N	3	25.5	
10	35.0		7	45.0	
7	35.0	, v	7	35.0	
10	16.0		8	55.5	
9	35.0		8	25.5	
3	25.5		9	35.0	
3	63.5		 10	35.0	
3	25.5			22.0	

rating	minage
3	25.5
7	35.0
8	25.5


Find age of the youngest sailor with age \geq 18, for each rating level with at least 2 such sailors, and where every sailor is under 60.

HAVING COUNT (*) > 1 AND MAX(S.age) < 60


				_
		rating	age	
		1	33.0	
		3	25.5	
		3	63.5	
_		3	25.5	
		7	45.0	
_		7	35.0	
		8	55.5	
_		8	25.5	
		9	35.0	
		10	35.0	
	I			

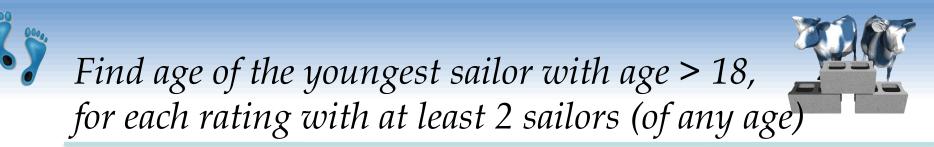
rating	minage
7	35.0
8	25.5

Comp 521 – Files and Databases

Fall 2012

SELECT S.rating, MIN (S.age)				Sailors instance:			
AS minage				sid	sname	rating	age
FROM Sailors S					dustin	7	45.0
WHERE S.age >= 18 AND S.age <= 60					brutus	1	33.0
GROUP BY S.rating		0		31	lubber	8	55.5
HAVING COUNT (*)	>1			32	andy	8	25.5
						10	35.0
			1	64	horatio	7	35.0
	rating	minage		71	zorba	10	16.0
Answer relation:	3	25.5		74	horatio	9	35.0
	7	35.0		85	art	3	25.5
	8	25.5		95	bob	3	63.5
				96	frodo	3	25.5

Comp 521 - Files and Databases



For each red boat, find the number of reservations for this boat

SELECT B.bid, COUNT (*) AS scount FROM Sailors S, Boats B, Reserves R WHERE S.sid=R.sid AND R.bid=B.bid AND B.color='red' GROUP BY B.bid

- Grouping over a join of three relations.
- What do we get if we remove B.color='red' from the WHERE clause and add a HAVING clause with this condition?
- What if we drop Sailors and the condition involving S.sid?

Comp 521 – Files and Databases

SELECT S.rating, MIN (S.age) FROM Sailors S WHERE S.age >= 18 GROUP BY S.rating HAVING 1 < (SELECT COUNT (*) FROM Sailors S2 WHERE S.rating=S2.rating)

- Shows HAVING clause can also contain a subquery.
- Compare this with the query where we considered only ratings with 2 sailors over 18!
- What if HAVING clause is replaced by:
 - HAVING COUNT(*) >1

Find those ratings for which the average age is the minimum over all ratings

- Aggregate operations cannot be nested! WRONG:
 - SELECT S.rating FROM Sailors S WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)
- Correct solution (in SQL/92):

```
SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)
```


- SQL was an important factor in the early acceptance of the relational model; more natural than earlier, procedural query languages.
- Relationally complete; in fact, significantly more expressive power than relational algebra.
- Even queries that can be expressed in RA can often be expressed more naturally in SQL.
- Many alternative ways to write a query; optimizer should look for most efficient evaluation plan.
 - In practice, users need to be aware of how queries are optimized and evaluated for best results.