Relational Calculus

Chapter 4.3-4.5

Relational Calculus

* Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC).
* Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
- TRC: Variables range over (i.e., get bound to) tuples.
- DRC: Variables range over domain elements (= field values).
- Both TRC and DRC are simple subsets of first-order logic.
* Expressions in the calculus are called formulas with unbound formal variables. An answer tuple is essentially an assignment of constants to these variables that make the formula evaluate to true.

A Fork in the Road

* TRC and DRC are semantically similar
* In TRC, tuples share an equal status as variables, and field referencing can be used to select tuple parts
* In DRC, formal variables are explicit
* In the book you will find extensive discussions and examples of TRC Queries (Sections 4.3.1) and a lesser treatment of DRC.
* To even things out, in this lecture I will focus on DRC examples

Domain Relational Calculus

* Query has the form:

$$
\{<\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}>\mid \mathrm{p}(<\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}>)\}
$$

* Answer includes all tuples <x1,x2,.., xn> that make the formula $\mathrm{p}(<\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}>)$ true.
* Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas

- Atomic formula:
- <x1,x2,...,xn> \in Rname, or X op Y , or X op constant
- op is one of $<,>,=, \leq, \geq, \neq$
* Formula:
- an atomic formula, or
$\exists X(p(X))$ is read as "there exists a setting of the variable X such that $p(X)$ is true".
$\forall X(p(X))$ is read as "for all values of $X, p(X)$ is true"
- $\neg p, p \wedge q, p \vee q$, where p and q are formulas, or
- $\exists X(p(X))$, where variable X is free in $\mathrm{p}(\mathrm{X})$, or
- $\quad \forall X(p(X))$, where variable X is free in $p(X)$

Free and Bound Variables

* The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to bind X .
- A variable that is not bound is $\underline{f r e e}$.
* Let us revisit the definition of a query:

$$
\{<\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}>\mid \mathrm{p}(<\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}>)\}
$$

* There is an important restriction: the variables x1, ..., xn that appear to the left of ' \mid ' must be the only free variables in the formula $p(. .$.$) .$

Examples

* Recall the example relations from last lecture

Sailors:

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reservations:

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Boats:

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find sailors with ratings >7

$$
\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in \text { Sailors } \wedge T\rangle 7\}
$$

* The condition $<I, N, T, A>\in$ Sailors binds the domain variables I, N, T and A to fields of any Sailors tuple.
* The term, $\langle I, N, T, A>$, to the left of ' $|$ ' (which should be read as such that) says that every tuple, that satisfies $T>7$ is in the answer.
* Modify this query to answer:
- Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

Same query using TRC

* Find all sailors with ratings above 7

$$
\{S \mid S \in \text { Sailors } \wedge \text { S.rating }>7\}
$$

* Note, here S is a tuple variable
$\{X \mid S \in$ Sailors \wedge S.rating $>7 \wedge$ X.name $=$ S.name \wedge X.age $=$ S.age $\}$
* Here X is a tuple variable with 2 fields (name, age). This query implicitly specifies projection (π) and renaming (ρ) relational algebra operators

Sailors rated > 7 who reserved boat \#103

$$
\begin{aligned}
&\{\langle I, N, T, A>|\langle I, N, T, A>\in \text { Sailors } \wedge T>7 \wedge \\
& \exists I r, B r, D(<I r, B r, D> \in \text { Reserves } \wedge \\
&I r=I \wedge B r=103)\}
\end{aligned}
$$

* We have used $\exists I r, B r, D(\ldots)$ as a shorthand for $\exists \operatorname{Ir}(\exists \operatorname{Br}(\exists D(\ldots)))$
$*$ Note the use of \exists to find a tuple in Reserves that 'joins with' (\bowtie) the Sailors tuples under consideration.

Find sailors rated >7 who've reserved a red boat

$$
\begin{gathered}
\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in \text { Sailors } \wedge(T\rangle 7) \wedge \\
(\exists I r, B r, D(<I r, B r, D>\in \text { Reserves } \wedge(I r=I) \wedge \\
(\exists B, B n, C(<B, B n, C>\in \text { Boats } \wedge \\
\left.\left.\left.\left.(B=B r) \wedge\left(C=\text { red }^{\prime}\right)\right)\right)\right)\right\}
\end{gathered}
$$

* Observe how the parentheses control the scope of each quantifier's binding.
* This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Names of all Sailors who have reserved boat 103
$\{\langle N\rangle \mid \exists I, T, A(\langle I, N, T, A\rangle \in$ Sailor

$$
\wedge \exists I r, B r, D(\langle I r, B r, D\rangle \in \text { Reserves } \wedge I r=I \wedge B r=103))\}
$$

$*$ Note that only the sname field is retained in the answer and that only N is a free variable.

* A more compact version

$$
\begin{aligned}
& \{\langle N\rangle \nexists I, T, A(\langle I, N, T, A\rangle \in \text { Sailor } \\
& \quad \wedge \exists D(\langle I, 103, D\rangle \in \text { Reserves }))\}
\end{aligned}
$$

Summary

* Relational algebra is operational. It explains how to execute a query. There may be many alternative executions that are equivalent.
* Relational calculus is non-operational. Users define queries in terms of what they want, not how to compute it. (Declarativeness.)
* Codd's insight: Relational algebra and "safe" relational calculus have same expressive power, leading to the notion of relational completeness and the foundation for databases.

