Relational Algebra

Chapter 4.1-4.2

Problem Set \#1 was issued today. It is due on $9 / 16$.

Formal Query Languages

*What is the basis of Query Languages?

* Two formal Query Languages form the basis of "real" query languages (e.g. SQL):
- Relational Algebra: Operational, it provides a recipe for evaluating the query. Useful for representing execution plans.
- Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative.)

What is an "Algebra"

* Set of operands and operations that they are "closed" under all compositions
* Examples
- Boolean algebra - operands are the logical values True and False, and operations include AND(), OR(), NOT(), etc.
- Integer algebra - operands are the set of integers, operands include ADD()$, \mathrm{SUB}()$, MUL(), NEG(), etc. many of which have special in-fix operator symbols (+,-,*,-)
* In our case operands are relations, what are the operators?

Example Instances

\% "Sailors" and "Reserves" relations for our examples.

$\boldsymbol{R 1}$| $\underline{\text { sid }}$ | $\underline{\text { bid }}$ | $\underline{\text { day }}$ |
| :--- | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

* We'll use "named field notation", which assumes that names of fields in query results are "inherited" from names of fields in query input relations.

S1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0
S2	sid	sname	rating	age
	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

Relational Algebra

* Basic operations:
- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Deletes unwanted columns from relation.
- Cross-product (\times) Allows us to combine two relations.
- Set-difference (一) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
* Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
* Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

* Deletes attributes that are not in projection list.
* Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
* Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

π
sname, rating
age
35.0
55.5
$\pi_{a g e^{(S 2)}}$

Selection

*Selects rows that satisfy selection condition.

* No duplicates in result! (Why?)
* Schema of result identical to schema of (only) input relation.
* Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0
$\sigma_{\text {rating }>8}(S 2)$			

Union, Intersection, Set-Differenc̈e

* All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- 'Corresponding' fields have the same type.
*What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

$S 1-S 2$

Cross-Product

* Each row of S1 is paired with each row of R1.
* Result schema has one field per field of S1 and R1, with field names inherited' if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator: $\rho(T(S 1$.sid \rightarrow sid $1, R 1$ sid \rightarrow sid 2$), S 1 \times R 1)$

Joins

* Condition Join: $\quad R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$

$($ sid $)$	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

$$
S 1 \bowtie_{S 1 . s i d<}<R 1 . \text { sid } R 1
$$

* Result schema same as that of cross-product.
* Fewer tuples than cross-product, might be able to compute more efficiently
* Sometimes called a theta-join.

Joins

* Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

$S 1 \bowtie_{\text {sid }} R 1$

* Result schema similar to cross-product, but only one copy of fields for which equality is specified.
* Natural Join: Equijoin on all common fields
(no labels on bowtie).

Division

* Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

* Let A have 2 fields, x and $y ; B$ have only field y :
- $A / B=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- i.e., A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A.
- If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
* In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A / B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4
A	

pno
p2
B1

pno
p2
p4
B2

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

A/B1
A/B2
B3

A/B3

Expressing A/B Using Basic Operators

* Division is not essential; it's just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
* Idea: For A / B, compute all x values that are not "disqualified" by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

$$
\begin{aligned}
& \text { Disqualified } x \text { values: } \quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right) \\
& A / B: \quad \pi_{x}(A)-\pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)
\end{aligned}
$$

Relational Algebra Examples

* Assume the following extended schema:
- Sailors(sid: integer, sname: string, rating: integer, age: real)
- Reserves(sid: integer, bid: integer, day: date)
- Boat(bid: integer, bname: string, bcolor: string)
* Objective: Write a relational algebra expression whose result instance satisfies the specified conditions
- May not be unique
- Some alternatives might be more efficient (in terms of time and/or space)

Example

Sailors:

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reservations:

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Boats:

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Names of sailors who've reserved boat \#103

* Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
* Solution 2: $\quad \rho\left(\right.$ Temp1, $\sigma_{b i d=103}$ Reserves $)$

$$
\begin{aligned}
& \rho(\text { Temp } 2, \text { Temp } 1 \bowtie \text { Sailors }) \\
& \pi_{\text {sname }}(\text { Temp } 2)
\end{aligned}
$$

* Solution 3: $\quad \pi_{\text {sname }}\left(\sigma_{\text {bid }=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Names of sailors who've reserved a red boat

* Information about boat color only available in Boats; so need an extra join:

$$
\pi_{\text {sname }}\left(\left(\sigma_{\text {color }}=^{\prime} \text { red }^{\prime} \text { Boats }\right) \bowtie \operatorname{Reserves} \bowtie \text { Sailors }\right)
$$

* A more efficient solution:

$$
\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\pi_{\text {bid }}\left(\sigma_{\text {color='red }} \text { Boats }\right)><\operatorname{Res}\right)><\text { Sailors }\right)
$$

A query optimizer can find this, given the first solution!

Sailors who've reserved a red or a green boat

* Can identify all red or green boats, then find sailors who' ve reserved one of these boats:
$\rho\left(\right.$ Tempboats, $\left(\sigma_{\text {color }}=\right.$ ' red' \vee color $=$ ' green' ${ }^{\prime}$ Boats $\left.)\right)$
$\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie \operatorname{Reserves} \bowtie} \bowtie$ Sailors)
* Can also define Tempboats using union! (How?)
* What happens if \vee is replaced by \wedge in this query?

Sailors who've reserved a red and a green boat

* Previous approach won’t work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
$\rho\left(\right.$ Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\text { 'red }}{ }^{\text {Boats }) \bowtie \text { Reserves }))}\right.\right.$
$\rho\left(\right.$ Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color='green }}{ }^{\text {Boats }) \bowtie \text { Reserves }))}\right.\right.$ $\pi_{\text {sname }}{ }^{((\text {Tempred } \cap \text { Tempgreen }) \bowtie \text { Sailors })}$

Names of sailors who've reserved all boats

* Use division; schemas of the input relations to / must be carefully chosen:

$$
\begin{aligned}
& \rho\left(\text { Tempsids, } \left(\pi_{\text {sid,bid }}^{\text {Reserves } \left.) /\left(\pi_{\text {bid }} \text { Boats }\right)\right)}\right.\right. \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

* To find sailors who've reserved all ‘Interlake' boats:

$$
\begin{aligned}
& \rho\left(\text { iBoats }, \sigma_{\text {bname }=\text { 'Interlake }}{ }^{\text {Boats })}\right. \\
& \rho\left(\text { Tempsids },\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }} \text { iBoats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

Summary

* Relational algebra is an operational specification for queries
* Each operation applies to relations and results in a new relation
* Equivalent queries can be achieved via many alternative relational algebra expressions
* Relational algebra provides a more than minimal set of operators to provide compact specifications

