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Virtual Memory 

1)  Second Midterm is graded. 
2)  Study session for last  

problem set on 11/30 from 5:30-8:30pm 
3)  Study session for Final Exam on 12/2?   

Finally! A lecture on
 something I care about–

 PAGE FAULTS! 

I wish we were still
 doing NAND gates… 
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You can never be too rich, too good looking,  
or have too much memory! 

Now that we know how to FAKE a FAST memory, we’ll turn our attention
 to FAKING a LARGE memory. 
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Lessons from History… 

There is only one mistake that can be made in computer design that is
 difficult to recover from—not having enough address bits for memory
 addressing and memory management. 

Gordon Bell and Bill Strecker 
speaking about the PDP-11 in 1976 

A partial list of successful machines that eventually starved to
 death for lack of address bits includes the  PDP 8, PDP 10, PDP 11,
 Intel 8080, Intel 8086, Intel 80186, Intel 80286, Motorola 6800,
 AMI 6502, Zilog Z80, Cray-1, and Cray X-MP. 

Hennessy & Patterson 

Why? Address size determines minimum width of anything that
 can hold an address: PC, registers, memory words, HW for
 address arithmetic (branches/jumps, loads/stores).  When you
 run out of address space it’s time for a new ISA! 



L23 – Virtual Memory 4 Comp 411 – Fall 2015 11/24/2015 

Squandering Address Space 

Address Space 

CODE, large monolithic programs (eg, Office, Firefox).... 
• only small portions might be used 
• add-ins and plug-ins 
• shared libraries/DLLs 
••• 

STACK: How much to reserve?  (consider RECURSION!) 

HEAP: N  variable-size data records... 
   Bound N?  Bound Size? 

OBSERVATIONS: 
• Can’t BOUND each usage...

 without compromising use. 
• Actual use is SPARSE 
• Working set even MORE sparse 
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Extending the Memory Hierarchy 

CPU FAST  
STATIC 

"CACHE" 

DYNAMIC  
RAM 

"MAIN  
MEMORY" 

"Secondary  
Storage" 

DISK 

So far, we’ve used SMALL fast memory + BIG slow memory to fake a  
BIG FAST memory (caching). 

Can we combine RAM and DISK to fake DISK sized at near RAM speeds? 

VIRTUAL MEMORY 
• use of RAM as cache to much larger storage pool, on slower devices 
• TRANSPARENCY - VM locations "look" the same to program  

whether on DISK or in RAM. 
• ISOLATION of actual RAM size from software. 
• support for  MULTIPLE, SIMULTANEOUS ADDRESS SPACES 

3x-20x 104x-105x 
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Addresses 

Virtual Memory 

ILLUSION: Huge memory 
 (232 (4G) bytes? 264 (18E) bytes?) 

ACTIVE USAGE: small fraction  
      (228 bytes?) 

Actual HARDWARE: 
• 231 (2G) bytes of RAM 
• 239 (500G) bytes of DISK... 
  ... maybe more, maybe less! 

ELEMENTS OF DECEIT: 
• Partition memory into 
  manageable chunks-- “Pages” 
  (4K-8K-16K-64K) 
• MAP a few to RAM,  
  assign others to DISK 
• Keep “HOT” pages in RAM. 

CPU RAM MMU 

“virtual address” 
VA 

“physical address” 
PA 

Memory Management Unit 

“VIRTUAL” 
memory 
pages 

“PHYSICAL” 
memory 
pages 

• 230 “Giga” 
• 240 “Terra” 
• 250 “Peta” 
• 260 “Exa” 

“Page Map” 
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Simple Page Map Design 

FUNCTION: Given Virtual Address, 
• Map to PHYSICAL address 

OR 

• Cause PAGE FAULT allowing
 page replacement 

Virtual Page # 

Physical Page # 

Why  use  HIGH  address  bits  to index  pages? 
... LOCALITY.  
Keeps  related  data  on  same  page. 

Why  use  LOW  address  bits  to  index  cache  lines? 
 ... LOCALITY.  
Keeps  related  data  from  competing for 
 same  cache  lines. 

PAGEMAP 

??? 
??? 

??? 

Virtual 
Memory 

Physical 
Memory “Physical 

Page Number” 
PPN 

Page Index 

“Page Map” 
A special memory 

that holds  
Virtual-to-Physical 

Mappings 



L23 – Virtual Memory 8 Comp 411 – Fall 2015 11/24/2015 

Virtual Memory vs. Cache 

MAIN 
MEMORY 

A Mem[A] 

B Mem[B] 

TAG DATA 

=? 

PAGEMAP PHYSICAL MEMORY 

VPAGE NO. OFFSET 

CACHE: 
•  Relatively short blocks (16-64 bytes) 
•  Few lines:  scarce resource 
•  miss time: 3x-20x hit time 

VIRTUAL MEMORY: 
•  Disk: long latency, fast xfer 
   → miss time: ~105 x hit time 
   → write-back essential! 
   → large pages in RAM 
•  Lots of lines:  one for each page 
•  Vpage mapping is determined  
   by an index  
   (i.e. “direct-mapped” w/o tag) 
   data in physical memory 

index 

index 
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Virtual Memory: A H/W view 

PAGEMAP 

X 
X 

X 

D R 
Virtual Memory Physical Memory 

Pagemap Characteristics: 

• One entry per virtual page! 

• Contains PHYSICAL page number (PPN) of each resident page 

• RESIDENT bit = 1 for pages stored in RAM, or 0 for non-resident
 (disk or unallocated).  Page fault when R = 0. 

• DIRTY bit says we’ve changed this page since loading it from disk
 (and therefore need to write it back to disk when it’s replaced) 

PPN 
0 
0 
0 
0 
1 
0 
0 

1 
1 
0 
0 
1 
1 
0 
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Virtual Memory: A S/W view 

int VtoP(unsigned int address) { 
 unsigned int VPageNo = address>>p; 
 unsigned int PageOffset = address&((1<<p)–1);  
 if (R[VPageNo] == 0) 
    PageFault(VPageNo); 
 return (PPN[VPageNo]<<p)|PageOffset; 
} 

/* Handle a missing page... */ 
void PageFault(int VPageNo) { 
  int i; 
  i = SelectLRUPage(); 
  if (D[i] == 1) 
   WritePage(DiskAdr(i),PPN[i]); 
  R[i] = 0; 

 PPN[VPageNo] = PPN[i]; 
 ReadPage(DiskAdr(VPageNo),PPN[i]); 
  R[VPageNo] = 1; 
  D[VPageNo] = 0; 
} 

Virtual Page # 

Physical Page # 

Problem: Translate 
  VIRTUAL ADDRESS 
  to PHYSICAL ADDRESS 

         VPageNo          PageOffset 
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The HW/SW Balance 
IDEA: 

•  devote HARDWARE to high-traffic, performance-critical path 
•  use (slow, cheap) SOFTWARE to handle exceptional cases 

HARDWARE performs address translation, detects page faults: 
•  running program is interrupted (“suspended”); 
•  PageFault(…) is called; 
•  On return from PageFault; running program can continue 

int VtoP(unsigned int address) { 
 unsigned int VPageNo = address>>p; 
 unsigned int PageOffset = address&((1<<p)–1);  
 if (R[VPageNo] == 0)PageFault(VPageNo); 
 return (PPN[VPageNo]<<p)|PageOffset; 
} 

/* Handle a missing page... */ 
void PageFault(int VPageNo) { 
  int i = SelectLRUPage(); 
  if (D[i] == 1) WritePage(DiskAdr(i),PPN[i]); 
  R[i] = 0; 

  PA[VPageNo] = PPN[i]; 
  ReadPage(DiskAdr(VPageNo),PPN[i]); 
  R[VPageNo] = 1; 
  D[VPageNo] = 0; 
} 

hardware 

software 
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Page Map Arithmetic 

PAGEMAP PHYSICAL MEMORY 

D R PPN 
VPageNo PO 

1 
1 

1 
0 

1 

p 

v 

PPageNo PO 
m 

(v + p)  bits in virtual address 
(m + p)  bits in physical address 
2v  number of VIRTUAL pages 
2m  number of PHYSICAL pages 
2p  bytes per physical page 
2v+p  bytes in virtual memory 
2m+p  bytes in physical memory 
(m+2)2v bits in the page map 

Typical page size: 4K – 128K bytes 
Typical (v+p): 32 or 64 bits 
Typical (m+p): 27 – 33 bits 
                        (128 MB – 8 GB) 
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Example: Page Map Arithmetic 

Virtual Page # 

Physical Page # 

SUPPOSE... 

32-bit Virtual address 

214 page size (16 KB) 

228 RAM (256 MB) 

THEN: 

# Physical Pages = ___________ 

# Virtual Pages = _____________ 

# Page Map Entries = _________ 

Use SRAM for page map???  OUCH! 

228/214 = 16384 

232/214 = 218 

262,144 
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RAM-Resident Page Maps 

SMALL page maps can use dedicated RAM…  
 but, gets this approach gets expensive for big ones! 

SOLUTION:  Move page map into MAIN MEMORY: 

Virtual Address Physical Memory 

virtual 
page 
number 

physical 
page 
number 

Physical memory
 pages that hold page
 map entries 

PROBLEM: 
Each memory reference 
now takes 2 accesses 
to physical memory! 

1)  Load VPN ! PPN 
2)  Load Mem[PPN | PO] 

The memory overhead for
 the pagemap is smaller
 than you might think.
 From the previous
 example: 4*218/228 = 0.4 % 
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Translation Look-aside Buffer (TLB) 
PROBLEM: 2x performance hit… each memory reference now takes 2 accesses! 

SOLUTION:  a special CACHE of recently used page map entries 

Virtual Address Physical Memory 

IDEA: 
LOCALITY in memory 
reference patterns → 
SUPER locality in references 
to page map 

VARIATIONS: 
•  sparse page map storage 
•  paging the page map 

TLB: small, usually fully-associative
 cache for mapping VPN→PPN 

virtual 
page 
number 

First, look 
in TLB 

physical 
page 
number 

On miss, do
 translation
 and store

 result 

On hit, skip
 translation  
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Optimizing Sparse Page Maps 

Virtual Address Physical Memory 

virtual 
page 
number physical 

page 
number TLB 

On TLB miss:  
•  look up VPN in “sparse” data structure (e.g., a list of VPN-PPN pairs) 
•  only have entries for ALLOCATED pages 
•  use hashing to speed up the search 
•  allocate new entries “on demand” 
•  time penalty?  LOW if TLB hit rate is high… 

Another good reason  
to handle page  
misses in SW 

For large Virtual Address
 spaces only a small
 percentage of page table
 entries contain Mappings.
 This is because some
 address ranges are never
 used by the application.
 How can we save space in
 the pagemap? 

For Example: 
   VA 264, 8Kb pages, PA 236 

How large of a page table? 

264-13 = 4* 251 = 253 bytes 

At most, how  
many could have a  
resident mapping? 

236-13 = 223 
223/251 = 3.7 x 10-9 
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Multilevel Page Maps 
Given a HUGE virtual memory, the cost of storing all of the page map
 entries in RAM may STILL be too expensive… 
SOLUTION: A hierarchical page map… take advantage of the observation
 that while the virtual memory address space is large, it is generally
 sparsely populated with clusters of pages. 

Consider a machine with a 32-bit
 virtual address space and 64 MB
 (26-bit) of physical memory that
 uses 4 KB pages. 

Assuming 4 byte page-table entries, a
 single-level page map requires 4MB
 (>6% of the available memory). Of
 these, more than 98% will reference
 non-resident pages (Why?). 

A 2-level look-up increases the size of
 the worse-case page table slightly.
 However, if a first level entry has
 its non-resident bit set it saves
 large amounts of memory. 

10 10 12 
32-bit virtual address 

A clever designer will
 notice that if the 2nd

 level tables are
 “page-sized” they
 too can be “paged
 out” (stored on disk) 

PTBL 

Level 1 Level 2 

Data 

Doesn’t that
 mean we now
 have to do 3
 accesses to get
 what we want? 

Usually, an 
on-chip
 register 



L23 – Virtual Memory 18 Comp 411 – Fall 2015 11/24/2015 

Example: Mapping VAs to PAs 

Suppose 
•  virtual memory of 232 (4G) bytes 
•  physical memory of 230 (1G) bytes 
•  page size is 214 (16 K) bytes 

1.  How many pages can be stored
 in physical memory at once? 

2.  How many entries are there in
 the page table? 

3.  How many bits are necessary
 per entry in the page table? 
 (Assume each entry has PPN,
 resident bit, dirty bit) 

4.  How many pages does the page
 table require?  

5.  A portion of the page table is
 given to the left.  What is the
 physical address for virtual
 address 0x00004110? 

VPN | R D PPN 
----+-------- 
 0  | 0 0  2 
 1  | 1 1  7 
 2  | 1 0  0 
 3  | 1 0  5 
 4  | 0 0  5 
 5  | 1 0  3 
 6  | 1 1  2 
 7  | 1 0  4 
 8  | 1 0  1 
 … 

230-14 = 216 = 64K 

232-14 = 218 = 256K 

16 (PPN) + 2 = 18 

(4*218)/214 = 26 = 64 
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Contexts 
A CONTEXT is a complete set of mappings from VIRTUAL to PHYSICAL
 addresses, as dictated by the full contents of the page map: 

PAGEMAP 

X 
X 

X 

D R 
Virtual Memory Physical Memory 

This enables several programs to be simultaneously loaded into main
 memory, each with it’s own address space: 

Th
e 
im
ag
e 
ca
nn
ot 
be 
dis
pl
ay
ed
. 
Yo
ur 
co
m
pu
ter 
m
ay 
no
t 
ha
ve 

Th
e 
im
ag
e 
ca
nn
ot 
be 
dis
pl
ay
ed
. 
Yo
ur 
co
m
pu
ter 
m
ay 
no
t 
ha
ve 

Virtual  
Memory 1 

Virtual  
Memory 2 

Physical  
Memory 

“Context Switch”: 
  Reload the page map! 

map map 

We might like to support
 multiple VIRTUAL to
 PHYSICAL Mappings
 and, thus, multiple
 Contexts. 

You end up with pages 
from different applications
 simultaneously in memory. 
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Contexts: A Sneak Preview  

The 
ima
ge 
can
not 
be 
dis
play
ed. 
You
r 
co
mp
uter 
ma
y 
not 
hav
e 
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The 
ima
ge 
can
not 
be 
disp
laye
d. 
You
r 
com
put
er 
may 
not 
hav
e 
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ugh 
me
mor
y to 
ope
n 
the 
ima

Virtual  
Memory 1 Virtual  

Memory 2 Physical  
Memory 

1. TIMESHARING among several programs -- 
• Separate context for each program 
• OS loads appropriate context into pagemap when switching among pgms 

2. Separate context for OS “Kernel” (eg, interrupt handlers)... 
• “Kernel” vs “User” contexts 
• Switch to Kernel context on interrupt; 
• Switch back on interrupt return. 
HARDWARE SUPPORT: 2 HW pagemaps 

Every application can
 be written as if it has
 access to all of
 memory, without
 considering where
 other applications
 reside. 

First Glimpse at a 
   VIRTUAL MACHINE 
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Example: UltraSPARC II MMU 

264 

243 

243 

51 13 

48 16 

45 19 

42 22 

4 page sizes: 
8KB, 64KB, 
512KB, 4MB 

C# 

C# 

C# 

C# 

64 

ITLB 

64 

DTLB 
41 

(2200 GB) 

TSB 
(direct-mapped) 

TLB miss: SW refills TLB from
 TSB cache (HW helps compute
 address) 

C# = context 

Physical Address 

Virtual Address 

64 
(44 used) 

Huge 64-bit address space
 (only 44-bits implemented) 

TSB – 
    Translation 
    Storage 
    Buffer 
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Using Caches with Virtual Memory 

CACHE MMU CPU 
DYNAMIC  

RAM 

DISK 

CACHE 
MMU CPU 

DYNAMIC  
RAM 

DISK 

Physical  Cache 
Tags match physical addresses 

•  Avoids stale cache data after 
   context switch 
•  SLOW: MMU time on HIT 

Virtual Cache 
Tags match virtual addresses 

•  Problem: cache becomes 
   invalid after context switch 
•  FAST: No MMU time on HIT 

These TAGs are virtual, they
 represent addresses before
 translation. 

These TAGs are physical, they hold
 addresses after translation. 

Counter intuitively perhaps, physically 
addressed Caches are the trend, because 
they better support parallel processing 
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Best of Both Worlds 

CACHE 

CPU DYNAMIC 
RAM 

MMU DISK 

OBSERVATION: If cache line selection is based on unmapped  page
 offset bits, RAM access in a physical cache can overlap  page
 map access.  Tag from cache is compared with physical page
 number from MMU. 

Want “small” cache index / small page size →  
     go with more associativity 
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Summary 
Virtual Memory 

 Makes a small PHYSICAL memory appear to be a large VIRTUAL one 

Break memory into managable chunks called PAGES 
Pagemap: 

 A table for mapping Virtual-to-Physical pages 
 Each entry has Resident, Dirty, and Physical Page Number 
 Can get large if virtual address space is large 
 Store in main memory 

TLB – Translation Look-aside Buffer 
 A pagemap “cache” 

Contexts –  
 Sets of virtual-to-physical mapping that allow pages from multiple
 applications to be in physical memory simultaneously (even if they have the
 same virtual addresses) 


