
L23 – Virtual Memory 1 Comp 411 – Fall 2015 11/24/2015

Virtual Memory

1)  Second Midterm is graded.
2)  Study session for last

problem set on 11/30 from 5:30-8:30pm
3)  Study session for Final Exam on 12/2?

Finally! A lecture on
 something I care about–

 PAGE FAULTS!

I wish we were still
 doing NAND gates…

L23 – Virtual Memory 2 Comp 411 – Fall 2015 11/24/2015

You can never be too rich, too good looking,
or have too much memory!

Now that we know how to FAKE a FAST memory, we’ll turn our attention
 to FAKING a LARGE memory.

L23 – Virtual Memory 3 Comp 411 – Fall 2015 11/24/2015

Lessons from History…

There is only one mistake that can be made in computer design that is
 difficult to recover from—not having enough address bits for memory
 addressing and memory management.

Gordon Bell and Bill Strecker
speaking about the PDP-11 in 1976

A partial list of successful machines that eventually starved to
 death for lack of address bits includes the PDP 8, PDP 10, PDP 11,
 Intel 8080, Intel 8086, Intel 80186, Intel 80286, Motorola 6800,
 AMI 6502, Zilog Z80, Cray-1, and Cray X-MP.

Hennessy & Patterson

Why? Address size determines minimum width of anything that
 can hold an address: PC, registers, memory words, HW for
 address arithmetic (branches/jumps, loads/stores). When you
 run out of address space it’s time for a new ISA!

L23 – Virtual Memory 4 Comp 411 – Fall 2015 11/24/2015

Squandering Address Space

Address Space

CODE, large monolithic programs (eg, Office, Firefox)....
• only small portions might be used
• add-ins and plug-ins
• shared libraries/DLLs
•••

STACK: How much to reserve? (consider RECURSION!)

HEAP: N variable-size data records...
 Bound N? Bound Size?

OBSERVATIONS:
• Can’t BOUND each usage...

 without compromising use.
• Actual use is SPARSE
• Working set even MORE sparse

L23 – Virtual Memory 5 Comp 411 – Fall 2015 11/24/2015

Extending the Memory Hierarchy

CPU FAST
STATIC

"CACHE"

DYNAMIC
RAM

"MAIN
MEMORY"

"Secondary
Storage"

DISK

So far, we’ve used SMALL fast memory + BIG slow memory to fake a
BIG FAST memory (caching).

Can we combine RAM and DISK to fake DISK sized at near RAM speeds?

VIRTUAL MEMORY
• use of RAM as cache to much larger storage pool, on slower devices
• TRANSPARENCY - VM locations "look" the same to program

whether on DISK or in RAM.
• ISOLATION of actual RAM size from software.
• support for MULTIPLE, SIMULTANEOUS ADDRESS SPACES

3x-20x 104x-105x

L23 – Virtual Memory 6 Comp 411 – Fall 2015 11/24/2015

Addresses

Virtual Memory

ILLUSION: Huge memory
 (232 (4G) bytes? 264 (18E) bytes?)

ACTIVE USAGE: small fraction
 (228 bytes?)

Actual HARDWARE:
• 231 (2G) bytes of RAM
• 239 (500G) bytes of DISK...
 ... maybe more, maybe less!

ELEMENTS OF DECEIT:
• Partition memory into
 manageable chunks-- “Pages”
 (4K-8K-16K-64K)
• MAP a few to RAM,
 assign others to DISK
• Keep “HOT” pages in RAM.

CPU RAM MMU

“virtual address”
VA

“physical address”
PA

Memory Management Unit

“VIRTUAL”
memory
pages

“PHYSICAL”
memory
pages

• 230 “Giga”
• 240 “Terra”
• 250 “Peta”
• 260 “Exa”

“Page Map”

L23 – Virtual Memory 7 Comp 411 – Fall 2015 11/24/2015

Simple Page Map Design

FUNCTION: Given Virtual Address,
• Map to PHYSICAL address

OR

• Cause PAGE FAULT allowing
 page replacement

Virtual Page #

Physical Page #

Why use HIGH address bits to index pages?
... LOCALITY.
Keeps related data on same page.

Why use LOW address bits to index cache lines?
 ... LOCALITY.
Keeps related data from competing for
 same cache lines.

PAGEMAP

???
???

???

Virtual
Memory

Physical
Memory “Physical

Page Number”
PPN

Page Index

“Page Map”
A special memory

that holds
Virtual-to-Physical

Mappings

L23 – Virtual Memory 8 Comp 411 – Fall 2015 11/24/2015

Virtual Memory vs. Cache

MAIN
MEMORY

A Mem[A]

B Mem[B]

TAG DATA

=?

PAGEMAP PHYSICAL MEMORY

VPAGE NO. OFFSET

CACHE:
•  Relatively short blocks (16-64 bytes)
•  Few lines: scarce resource
•  miss time: 3x-20x hit time

VIRTUAL MEMORY:
•  Disk: long latency, fast xfer
 → miss time: ~105 x hit time
 → write-back essential!
 → large pages in RAM
•  Lots of lines: one for each page
•  Vpage mapping is determined
 by an index
 (i.e. “direct-mapped” w/o tag)
 data in physical memory

index

index

L23 – Virtual Memory 9 Comp 411 – Fall 2015 11/24/2015

Virtual Memory: A H/W view

PAGEMAP

X
X

X

D R
Virtual Memory Physical Memory

Pagemap Characteristics:

• One entry per virtual page!

• Contains PHYSICAL page number (PPN) of each resident page

• RESIDENT bit = 1 for pages stored in RAM, or 0 for non-resident
 (disk or unallocated). Page fault when R = 0.

• DIRTY bit says we’ve changed this page since loading it from disk
 (and therefore need to write it back to disk when it’s replaced)

PPN
0
0
0
0
1
0
0

1
1
0
0
1
1
0

L23 – Virtual Memory 10 Comp 411 – Fall 2015 11/24/2015

Virtual Memory: A S/W view

int VtoP(unsigned int address) {
 unsigned int VPageNo = address>>p;
 unsigned int PageOffset = address&((1<<p)–1);
 if (R[VPageNo] == 0)
 PageFault(VPageNo);
 return (PPN[VPageNo]<<p)|PageOffset;
}

/* Handle a missing page... */
void PageFault(int VPageNo) {
 int i;
 i = SelectLRUPage();
 if (D[i] == 1)
 WritePage(DiskAdr(i),PPN[i]);
 R[i] = 0;

 PPN[VPageNo] = PPN[i];
 ReadPage(DiskAdr(VPageNo),PPN[i]);
 R[VPageNo] = 1;
 D[VPageNo] = 0;
}

Virtual Page #

Physical Page #

Problem: Translate
 VIRTUAL ADDRESS
 to PHYSICAL ADDRESS

 VPageNo PageOffset

L23 – Virtual Memory 11 Comp 411 – Fall 2015 11/24/2015

The HW/SW Balance
IDEA:

•  devote HARDWARE to high-traffic, performance-critical path
•  use (slow, cheap) SOFTWARE to handle exceptional cases

HARDWARE performs address translation, detects page faults:
•  running program is interrupted (“suspended”);
•  PageFault(…) is called;
•  On return from PageFault; running program can continue

int VtoP(unsigned int address) {
 unsigned int VPageNo = address>>p;
 unsigned int PageOffset = address&((1<<p)–1);
 if (R[VPageNo] == 0)PageFault(VPageNo);
 return (PPN[VPageNo]<<p)|PageOffset;
}

/* Handle a missing page... */
void PageFault(int VPageNo) {
 int i = SelectLRUPage();
 if (D[i] == 1) WritePage(DiskAdr(i),PPN[i]);
 R[i] = 0;

 PA[VPageNo] = PPN[i];
 ReadPage(DiskAdr(VPageNo),PPN[i]);
 R[VPageNo] = 1;
 D[VPageNo] = 0;
}

hardware

software

L23 – Virtual Memory 12 Comp 411 – Fall 2015 11/24/2015

Page Map Arithmetic

PAGEMAP PHYSICAL MEMORY

D R PPN
VPageNo PO

1
1

1
0

1

p

v

PPageNo PO
m

(v + p) bits in virtual address
(m + p) bits in physical address
2v number of VIRTUAL pages
2m number of PHYSICAL pages
2p bytes per physical page
2v+p bytes in virtual memory
2m+p bytes in physical memory
(m+2)2v bits in the page map

Typical page size: 4K – 128K bytes
Typical (v+p): 32 or 64 bits
Typical (m+p): 27 – 33 bits
 (128 MB – 8 GB)

L23 – Virtual Memory 13 Comp 411 – Fall 2015 11/24/2015

Example: Page Map Arithmetic

Virtual Page #

Physical Page #

SUPPOSE...

32-bit Virtual address

214 page size (16 KB)

228 RAM (256 MB)

THEN:

Physical Pages = ___________

Virtual Pages = _____________

Page Map Entries = _________

Use SRAM for page map??? OUCH!

228/214 = 16384

232/214 = 218

262,144

L23 – Virtual Memory 14 Comp 411 – Fall 2015 11/24/2015

RAM-Resident Page Maps

SMALL page maps can use dedicated RAM…
 but, gets this approach gets expensive for big ones!

SOLUTION: Move page map into MAIN MEMORY:

Virtual Address Physical Memory

virtual
page
number

physical
page
number

Physical memory
 pages that hold page
 map entries

PROBLEM:
Each memory reference
now takes 2 accesses
to physical memory!

1)  Load VPN ! PPN
2)  Load Mem[PPN | PO]

The memory overhead for
 the pagemap is smaller
 than you might think.
 From the previous
 example: 4*218/228 = 0.4 %

L23 – Virtual Memory 15 Comp 411 – Fall 2015 11/24/2015

Translation Look-aside Buffer (TLB)
PROBLEM: 2x performance hit… each memory reference now takes 2 accesses!

SOLUTION: a special CACHE of recently used page map entries

Virtual Address Physical Memory

IDEA:
LOCALITY in memory
reference patterns →
SUPER locality in references
to page map

VARIATIONS:
•  sparse page map storage
•  paging the page map

TLB: small, usually fully-associative
 cache for mapping VPN→PPN

virtual
page
number

First, look
in TLB

physical
page
number

On miss, do
 translation
 and store

 result

On hit, skip
 translation

L23 – Virtual Memory 16 Comp 411 – Fall 2015 11/24/2015

Optimizing Sparse Page Maps

Virtual Address Physical Memory

virtual
page
number physical

page
number TLB

On TLB miss:
•  look up VPN in “sparse” data structure (e.g., a list of VPN-PPN pairs)
•  only have entries for ALLOCATED pages
•  use hashing to speed up the search
•  allocate new entries “on demand”
•  time penalty? LOW if TLB hit rate is high…

Another good reason
to handle page
misses in SW

For large Virtual Address
 spaces only a small
 percentage of page table
 entries contain Mappings.
 This is because some
 address ranges are never
 used by the application.
 How can we save space in
 the pagemap?

For Example:
 VA 264, 8Kb pages, PA 236

How large of a page table?

264-13 = 4* 251 = 253 bytes

At most, how
many could have a
resident mapping?

236-13 = 223
223/251 = 3.7 x 10-9

L23 – Virtual Memory 17 Comp 411 – Fall 2015 11/24/2015

Multilevel Page Maps
Given a HUGE virtual memory, the cost of storing all of the page map
 entries in RAM may STILL be too expensive…
SOLUTION: A hierarchical page map… take advantage of the observation
 that while the virtual memory address space is large, it is generally
 sparsely populated with clusters of pages.

Consider a machine with a 32-bit
 virtual address space and 64 MB
 (26-bit) of physical memory that
 uses 4 KB pages.

Assuming 4 byte page-table entries, a
 single-level page map requires 4MB
 (>6% of the available memory). Of
 these, more than 98% will reference
 non-resident pages (Why?).

A 2-level look-up increases the size of
 the worse-case page table slightly.
 However, if a first level entry has
 its non-resident bit set it saves
 large amounts of memory.

10 10 12
32-bit virtual address

A clever designer will
 notice that if the 2nd

 level tables are
 “page-sized” they
 too can be “paged
 out” (stored on disk)

PTBL

Level 1 Level 2

Data

Doesn’t that
 mean we now
 have to do 3
 accesses to get
 what we want?

Usually, an
on-chip
 register

L23 – Virtual Memory 18 Comp 411 – Fall 2015 11/24/2015

Example: Mapping VAs to PAs

Suppose
•  virtual memory of 232 (4G) bytes
•  physical memory of 230 (1G) bytes
•  page size is 214 (16 K) bytes

1.  How many pages can be stored
 in physical memory at once?

2.  How many entries are there in
 the page table?

3.  How many bits are necessary
 per entry in the page table?
 (Assume each entry has PPN,
 resident bit, dirty bit)

4.  How many pages does the page
 table require?

5. A portion of the page table is
 given to the left. What is the
 physical address for virtual
 address 0x00004110?

VPN | R D PPN
----+--------
 0 | 0 0 2
 1 | 1 1 7
 2 | 1 0 0
 3 | 1 0 5
 4 | 0 0 5
 5 | 1 0 3
 6 | 1 1 2
 7 | 1 0 4
 8 | 1 0 1
 …

230-14 = 216 = 64K

232-14 = 218 = 256K

16 (PPN) + 2 = 18

(4*218)/214 = 26 = 64

L23 – Virtual Memory 19 Comp 411 – Fall 2015 11/24/2015

Contexts
A CONTEXT is a complete set of mappings from VIRTUAL to PHYSICAL
 addresses, as dictated by the full contents of the page map:

PAGEMAP

X
X

X

D R
Virtual Memory Physical Memory

This enables several programs to be simultaneously loaded into main
 memory, each with it’s own address space:

Th
e
im
ag
e
ca
nn
ot
be
dis
pl
ay
ed
.
Yo
ur
co
m
pu
ter
m
ay
no
t
ha
ve

Th
e
im
ag
e
ca
nn
ot
be
dis
pl
ay
ed
.
Yo
ur
co
m
pu
ter
m
ay
no
t
ha
ve

Virtual
Memory 1

Virtual
Memory 2

Physical
Memory

“Context Switch”:
 Reload the page map!

map map

We might like to support
 multiple VIRTUAL to
 PHYSICAL Mappings
 and, thus, multiple
 Contexts.

You end up with pages
from different applications
 simultaneously in memory.

L23 – Virtual Memory 20 Comp 411 – Fall 2015 11/24/2015

Contexts: A Sneak Preview

The
ima
ge
can
not
be
dis
play
ed.
You
r
co
mp
uter
ma
y
not
hav
e
eno
ugh
me
mor
y to
ope
n
the

The
ima
ge
can
not
be
disp
laye
d.
You
r
com
put
er
may
not
hav
e
eno
ugh
me
mor
y to
ope
n
the
ima

Virtual
Memory 1 Virtual

Memory 2 Physical
Memory

1. TIMESHARING among several programs --
• Separate context for each program
• OS loads appropriate context into pagemap when switching among pgms

2. Separate context for OS “Kernel” (eg, interrupt handlers)...
• “Kernel” vs “User” contexts
• Switch to Kernel context on interrupt;
• Switch back on interrupt return.
HARDWARE SUPPORT: 2 HW pagemaps

Every application can
 be written as if it has
 access to all of
 memory, without
 considering where
 other applications
 reside.

First Glimpse at a
 VIRTUAL MACHINE

L23 – Virtual Memory 21 Comp 411 – Fall 2015 11/24/2015

Example: UltraSPARC II MMU

264

243

243

51 13

48 16

45 19

42 22

4 page sizes:
8KB, 64KB,
512KB, 4MB

C#

C#

C#

C#

64

ITLB

64

DTLB
41

(2200 GB)

TSB
(direct-mapped)

TLB miss: SW refills TLB from
 TSB cache (HW helps compute
 address)

C# = context

Physical Address

Virtual Address

64
(44 used)

Huge 64-bit address space
 (only 44-bits implemented)

TSB –
 Translation
 Storage
 Buffer

L23 – Virtual Memory 22 Comp 411 – Fall 2015 11/24/2015

Using Caches with Virtual Memory

CACHE MMU CPU
DYNAMIC

RAM

DISK

CACHE
MMU CPU

DYNAMIC
RAM

DISK

Physical Cache
Tags match physical addresses

•  Avoids stale cache data after
 context switch
•  SLOW: MMU time on HIT

Virtual Cache
Tags match virtual addresses

•  Problem: cache becomes
 invalid after context switch
•  FAST: No MMU time on HIT

These TAGs are virtual, they
 represent addresses before
 translation.

These TAGs are physical, they hold
 addresses after translation.

Counter intuitively perhaps, physically
addressed Caches are the trend, because
they better support parallel processing

L23 – Virtual Memory 23 Comp 411 – Fall 2015 11/24/2015

Best of Both Worlds

CACHE

CPU DYNAMIC
RAM

MMU DISK

OBSERVATION: If cache line selection is based on unmapped page
 offset bits, RAM access in a physical cache can overlap page
 map access. Tag from cache is compared with physical page
 number from MMU.

Want “small” cache index / small page size →
 go with more associativity

L23 – Virtual Memory 24 Comp 411 – Fall 2015 11/24/2015

Summary
Virtual Memory

 Makes a small PHYSICAL memory appear to be a large VIRTUAL one

Break memory into managable chunks called PAGES
Pagemap:

 A table for mapping Virtual-to-Physical pages
 Each entry has Resident, Dirty, and Physical Page Number
 Can get large if virtual address space is large
 Store in main memory

TLB – Translation Look-aside Buffer
 A pagemap “cache”

Contexts –
 Sets of virtual-to-physical mapping that allow pages from multiple
 applications to be in physical memory simultaneously (even if they have the
 same virtual addresses)

