
L21 – Memory Hierarchy 1 Comp 411 – Fall 2015 11/12/2015

Memory Hierarchy

Still in your Halloween
 costume?

It makes me look faster,
don’t you think?

• Memory Flavors
• Principle of Locality
• Program Traces
• Memory Hierarchies
• Associativity

Midterm #2 Study
 Session Tomorrow
 (11/13) during lab.

L21 – Memory Hierarchy 2 Comp 411 – Fall 2015 11/12/2015

What Do We Want in a Memory?
PC

INST

MADDR
MDATA

miniMIPS MEMORY

Capacity Latency Cost

Register 1000’s of bits 10 ps $$$$

SRAM 100’s Kbytes 0.2 ns $$$

DRAM 100’s Mbytes 5 ns $

Hard disk* 10’s Tbytes 10 ms ¢

Want?

* non-volatile

ADDR

DOUT

ADDR
DATA
R/W Wr

4 Gbyte 0.2 ns cheap

L21 – Memory Hierarchy 3 Comp 411 – Fall 2015 11/12/2015

Tricks for Increasing Throughput

Ro
w

A
dd

re
ss

 D
ec

od
er

Col.

1
Col.
2

Col.
3

Col.
2M

Row 1

Row 2

Row 2N

Column Multiplexer/Shifter
N

N

Multiplexed
 Address bit lines word lines

memory
cell

(one bit)

D t1 t2 t3 t4

The first thing that should
 pop into you mind when
 asked to speed up a
 digital design…

PIPELINING
Synchronous DRAM

(SDRAM)
20nS reads and writes

($5 per Gbyte)

Clock

Data
out

Double Data Rate
Synchronous DRAM

(DDR)

L21 – Memory Hierarchy 4 Comp 411 – Fall 2015 11/12/2015

Solid-State Disks
Modern solid-state disks are a non-volatile (they don’t
forget their contents when powered down) alternative to
dynamic memory. They use a special type of
“floating-gate” transistor to store data. This is done
by applying a electric field large enough to actually cause
carriers (ions) to permanently migrate into the gate, thus
turning the switch (bit) permanently on. They are, however,
not ideally suited for “main memory”. Reasons:

•  They tend not to be randomly addressable. You can
only access data in large blocks, and you need to
sequentially scan through the block to get a
particular value.

•  Asymmetric read and write times. Writes are
often 10x-20x slower than reads.

•  The number of write cycles is limited (Practically 107-109,
which seems like a lot for saving images, but a single
variable might be written that many times in a normal
program), and writes are generally an entire block at a time.

300ns read + latency
6000ns write + latency

($1 per Gbyte)

L21 – Memory Hierarchy 5 Comp 411 – Fall 2015 11/12/2015

 Traditional Hard Disk Drives

Typical high-end drive:
•  Average seek time = 8.5 ms
•  Average latency = 4 ms (7200 rpm)
• Transfer rate = 300 Mbytes/s (SATA)
•  Capacity = 2000 G byte
•  Cost = $100 (5¢ Gbyte)

 fig
ur

es
 fr

om
 w

ww
.p

ct
ec

hg
ui

de
.c

om

L21 – Memory Hierarchy 6 Comp 411 – Fall 2015 11/12/2015

Quantity vs Quality…

Memory systems can be either:
• BIG and SLOW... or
• SMALL and FAST.

10-8 10-3 100

.1

10

1000

100

1

10-6

DVD Burner (0.02$/GB, 120ms)

HDD(0.05$/GB, 10 mS)

DRAM (5$/GB, 5 ns)

SRAM (500$/GB, 0.2 ns)

Access
Time

.01

$/GB

We’ve explored a range of
 device-design trade-offs.

Is there an
 ARCHITECTURAL
 solution to this DELIMA?

1

SSD
(1$/GB, 300 nS)

L21 – Memory Hierarchy 7 Comp 411 – Fall 2015 11/12/2015

Managing Memory via Programming
•  In reality, systems are built with a mixture of all these

 various memory types

•  How do we make the most effective use of each memory?
•  We could push all of these issues off to programmers

•  Keep most frequently used variables and stack in SRAM
•  Keep large data structures (arrays, lists, etc) in DRAM
•  Keep bigger data structures on disk (databases) on DISK

•  It is harder than you think… data usage evolves over a
 program’s execution

CPU

SRAM MAIN
MEM

L21 – Memory Hierarchy 8 Comp 411 – Fall 2015 11/12/2015

Best of Both Worlds
What we REALLY want: A BIG, FAST memory!

 (Keep everything within instant access)

We’d like to have a memory system that
• PERFORMS like 2 GBytes of SRAM; but
• COSTS like 512 MBytes of slow memory.

SURPRISE: We can (nearly) get our wish!

KEY: Use a hierarchy of memory technologies:

CPU

SRAM MAIN
MEM

L21 – Memory Hierarchy 9 Comp 411 – Fall 2015 11/12/2015

Key IDEA
• Keep the most often-used data in a small,

 fast SRAM call a “Cache” (“on” CPU chip)

• Refer to Main Memory only rarely, for
 remaining data.

The reason this strategy works: LOCALITY

Locality of Reference:
Reference to location X at time t implies

 that reference to location X+ΔX at
 time t+Δt becomes more probable as
 ΔX and Δt approach zero.

L21 – Memory Hierarchy 10 Comp 411 – Fall 2015 11/12/2015

Typical Memory Reference Patterns

time

address

data

stack

program

MEMORY TRACE –
 A temporal sequence
 of memory references
 (addresses) from a
 real program.

TEMPORAL LOCALITY –
 If an item is referenced,
 it will tend to be
 referenced again soon

SPATIAL LOCALITY –
 If an item is referenced,
 nearby items will tend
 to be referenced soon.

L21 – Memory Hierarchy 11 Comp 411 – Fall 2015 11/12/2015

Working Set

time

address

data

stack

program

Δt

|S|

Δ t

S is the set of locations
 accessed during Δt.

Working set: a set S
 which changes slowly
 w.r.t. access time.

 Working set size, |S|

L21 – Memory Hierarchy 12 Comp 411 – Fall 2015 11/12/2015

Exploiting the Memory Hierarchy
Approach 1 (Cray, others): Expose Hierarchy

 • Registers, Main Memory,
 Disk each available as
 storage alternatives;

• Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
• Programming model: SINGLE kind of memory, single address
 space.

• Machine AUTOMATICALLY assigns locations to fast or slow
 memory, depending on usage patterns.

CPU

SRAM
MAIN
MEM

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

L21 – Memory Hierarchy 13 Comp 411 – Fall 2015 11/12/2015

Why We Care

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

TRICK #1: How to make slow MAIN MEMORY appear faster than it is.

CPU performance is dominated by memory performance.
 More significant than:

 ISA, circuit optimization, pipelining, super-scalar, etc

TRICK #2: How to make a small MAIN MEMORY appear bigger than it is.

“VIRTUAL MEMORY”
“SWAP SPACE”

Technique: VIRTUAL MEMORY – Lecture after that

“CACHE”

Technique: CACHEING – This and next Lectures

L21 – Memory Hierarchy 14 Comp 411 – Fall 2015 11/12/2015

The Cache Idea:
Program-Transparent Memory Hierarchy

Cache contains TEMPORARY COPIES of selected
main memory locations... eg. Mem[100] = 37

GOALS:
1)  Improve the average access time

2)  Transparency (compatibility, programming ease)

1.0 (1.0-α)
CPU

"CACHE"

DYNAMIC
RAM

"MAIN
MEMORY"

100 37

α
(1-α)

HIT RATIO: Fraction of refs found in CACHE.
MISS RATIO: Remaining references.

Challenge:
 To make the
 hit ratio as
 high as
 possible.

€

tave =αtc + (1−α)(tc + tm) = tc + (1−α)tm Why, on a miss, do I incur
 the access penalty for
 both main memory and
 cache?

L21 – Memory Hierarchy 15 Comp 411 – Fall 2015 11/12/2015

How High of a Hit Ratio?

 Suppose we can easily build an on-chip static memory
 with a 800 pS access time, but the fastest dynamic
 memories that we can buy for main memory have an
 average access time of 10 nS. How high of a hit rate do
 we need to sustain an average access time of 1 nS?

€

α = 1− tave − tc
tm

€

= 1− 1− 0.8
10

= 98%

WOW, a cache really needs to be good? €

Solve forα tave = tc + (1−α)tm

L21 – Memory Hierarchy 16 Comp 411 – Fall 2015 11/12/2015

The Cache Principle

Find “Hart, Lee”

5-Minute Access Time: 5-Second Access Time:

ALGORTHIM: Look on your desk for
 the requested information first, if
 its not there check secondary
 storage

L21 – Memory Hierarchy 17 Comp 411 – Fall 2015 11/12/2015

Basic Cache Algorithm

ON REFERENCE TO Mem[X]: Look for X among cache tags...

HIT: X == TAG(i) , for some cache line i
READ: return DATA(i)
WRITE: change DATA(i);

 Start Write to Mem(X)

MISS: X not found in TAG of any cache line

REPLACEMENT SELECTION:
Select some LINE k to hold Mem[X] (Allocation)

READ: Read Mem[X]
Set TAG(k)=X, DATA(K)=Mem[X]

WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(K)= new Mem[X]

MAIN
MEMORY

CPU

(1-α)

Tag Data

A

B

Mem[A]

Mem[B]

“X” here is a
 memory
 address.

line
line

line
line

L21 – Memory Hierarchy 18 Comp 411 – Fall 2015 11/12/2015

Cache
Sits between CPU and main memory
Very fast memory that stores TAGs and DATA

TAG is the memory address (or part of it)
DATA is a copy of memory at the

 address given by TAG

1000 17
1040 1
1032 97
1008 11

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L21 – Memory Hierarchy 19 Comp 411 – Fall 2015 11/12/2015

Cache Access
On load we compare TAG entries to the ADDRESS we’re loading

If Found ! a HIT
return the DATA

If Not Found ! a MISS
go to memory get the data

 decide where it goes in the cache,
put it and its address (TAG) in the cache

1000 17
1040 1
1032 97
1008 11

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L21 – Memory Hierarchy 20 Comp 411 – Fall 2015 11/12/2015

How Many Words per Tag?
Caches usually get more data than requested (Why?)

Each LINE typically stores more than 1 word,
16-64 bytes (4-16 Words) per line is common

A bigger LINE SIZE means:
 1) fewer misses because of spatial locality

 2) fewer TAG bits per DATA bits
but bigger LINE means longer time on miss

1000 17 23
1040 1 4
1032 97 25
1008 11 5

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L21 – Memory Hierarchy 21 Comp 411 – Fall 2015 11/12/2015

How do we Search the Cache TAGs?

Nope, “Smith”

Nope, “Acan”

Nope, “LeVile”

HERE IT IS!

Find “Hart, Lee” Associativity:
 The degree of
 parallelism used in
 the lookup of Tags

L21 – Memory Hierarchy 22 Comp 411 – Fall 2015 11/12/2015

Fully-Associative Cache

TAG Data

= ?

TAG Data

= ?

TAG Data

= ?

Incoming
Address

HIT

Data
 Out

The extreme in associatively:
 All TAGS are searched
 in parallel

Data items from *any*
 address can be located in
 any cache line

L21 – Memory Hierarchy 23 Comp 411 – Fall 2015 11/12/2015

Direct-Mapped Cache
 (non-associative)

NO Parallelism:

Look in JUST ONE place,
 determined by
 parameters of incoming
 request (address bits)

... can use ordinary RAM as
 table

A

Find “Hart, Lee”

Y Z

B
H

L21 – Memory Hierarchy 24 Comp 411 – Fall 2015 11/12/2015

Direct-Map Example

1024 44 99
1000 17 23
1040 1 4
1016 29 38

Tag Data

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

With 8 byte lines, 3 low-order bits determine the byte within the line

With 4 cache lines, the next 2 bits determine which line to use
1024d = 100000000002 ! line = 002 = 010

1000d = 011111010002 ! line = 012 = 110

1040d = 100000100002 ! line = 102 = 210

Line 0

Line 1

Line 2

Line 3

Cache

L21 – Memory Hierarchy 25 Comp 411 – Fall 2015 11/12/2015

Direct Mapping Miss

1024 44 99
1000 17 23
1040 1 4
1016 29 38

Tag Data

What happens when we now ask for address 1008?
 100810 = 011111100002 ! line = 102 = 210

but earlier we put 1040 there...
 104010 = 100000100002 ! line = 102 = 210

1008 11 5

Line 0

Line 1

Line 2

Line 3

Cache

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

L21 – Memory Hierarchy 26 Comp 411 – Fall 2015 11/12/2015

Direct Mapped Cache
LOW-COST Leader:

Requires only a single comparator and
use ordinary (fast) static RAM for cache tags & data:

Incoming Address
K T

= ?

HIT Data Out

DISADVANTAGE:

COLLISIONS

QUESTION: Why not use HIGH-order
 bits as the Cache Index?

K-bit Cache Index

D-bit data word
T Upper-address bits

Tag Data

K x (T + D)-bit static RAM

L21 – Memory Hierarchy 27 Comp 411 – Fall 2015 11/12/2015

A Problem with Collisions

Find “Heel, Art”
Find “Here, Al T.”

Find “Hart, Lee” Nope, I’ve got
“Heel”

under “H”

PROBLEM:
 Contention among H’s....

- CAN’T cache both
 “Hart” & “Heel”

... Suppose H’s tend
 to come at once?

==> BETTER IDEA:
 File by LAST letter!

Y Z

B
H

L21 – Memory Hierarchy 28 Comp 411 – Fall 2015 11/12/2015

Cache Questions = Cash Questions
What lies between Fully Associate and Direct-Mapped?
When I put something new into the cache, what data gets

 thrown out?
How many processor words should there be per tag?
When I write to cache, should I also write to memory?
What do I do when a write misses cache, should space in

 cache be allocated for the written address.
What if I have INPUT/OUTPUT devices located at certain

 memory addresses, do we cache them?

