Synchronous Logic

1) Sequential Logic
2) Synchronous Design
3) Synchronous Timing Analysis
4) Single Clock Design
5) Finite State Machines
6) Turing Machines
7) What it means to be "Computable"

Road Traveled So Far...

Our motto: Sweat the details once, and then put a box around it!

Something We Can't Build (Yet)

What if you were given the following system design specification?

What makes this System so different from those we've discussed before?

1. "State" - i.e. the circuit has memory
2. The output was changed by a input "event" (pushing a button) rather than an input "value"

"Sequential" = Stateful

Plan: Build a Sequential Circuit with stored digital STATE -

- MEMORY stores CURRENT state
- Combinational Logic computes
- the NEXT state (Based on inputs \& current state)
- the OUTPUTs (Based on inputs and/or current state)
- State changes on LOAD control input

Didn't we develop some memory devices last time?

Review of Flip Flop Timing

$t_{P D}$: maximum propagation delay, CLK $\rightarrow Q$
How LONG after clock rises until outputs (Q) are valid $t_{C D}$: minimum contamination delay, CLK $\rightarrow Q$

How SOON after clock rises until outputs (Q) go invalid
$>t_{\text {SETUP }}>t_{\text {HOLD }}$
We haven't explicitly mentioned this timing attribute, but it must have existed even for combinational logic. We can always safely assume it is O (ie. the outputs become invalid immediately)
$\mathrm{t}_{\text {SETUP: }}$ setup time
How LONG data (D) input must be stable before clock's rising edge
$\mathrm{t}_{\text {HOLD }}$: hold time
How LONG data (D) inputs must be held after clock's rising edge

"Synchronous" Timing Analysis

$t_{1}=t_{C D, \text { reg1 }}+t_{C D, L} \geq t_{\text {HOLD, reg2 }}$
$t_{2}=t_{P D, \text { reg1 }}+t_{P D, L} \leq t_{C L K}-t_{\text {SETUP,reg } 2}$

Questions for register-based designs:

- How much time for useful work (i.e. for combinational logic delay)?
- Does it help to guarantee a minimum $t_{C D}$? How 'bout designing registers so that

$$
t_{C D, \text { reg }} \geq t_{\text {HOLD,reg }} ?
$$

- What happens if CLK signal doesn't arrive at the two registers at exactly the same time (a phenomenon known as "clock skew")?

Minimum Clock Period : $t_{C L K} \geq t_{\text {PD,reg1 }}+t_{\text {PD,L }}+t_{\text {SETUP,reg2 }}$

Example: Flip Flop Timing

Questions:

1. $t_{C D}$ for the ROM?

$$
\begin{aligned}
t_{C D, R E G}+t_{C D, R O M} & >t_{H, R E G} \\
1 \mathrm{nS}+t_{C D, R O M} & >2 n S \\
t_{C D, R O M} & >1 \mathrm{nS}
\end{aligned}
$$

2. Min. clock period?

$$
\begin{aligned}
& t_{C L K}>t_{P D, R E G}+t_{P D, R O M}+t_{S, R E G} \\
& t_{C L K}>3 \mathrm{~ns}+5 \mathrm{~ns}+2 \mathrm{nS} \\
& t_{C L K}>10 \mathrm{nS}
\end{aligned}
$$

3. Constraints on inputs?
"start", " 0 ", and " " must be valid $t_{P D, R O M}+t_{S, R E G}=5+2=7 \mathrm{~ns}$
before the clock and held
$t_{H, R E G}-t_{C D, R O M}=2-1=1 \mathrm{~ns}$
after it.

Single Synchronous Clock Design

Sequential \neq Synchronous

However, Synchronous $=$ A recipe for robust sequential circuits:

- No combinational cycles (other than those already built into the registers)
- Only cares about values of combinational circuits just before rising edge of clock
- Clock period greater than every combinational delay
- Changes state after all logic transitions have stopped!

Designing Sequential Logic

Sequential logic is used when the solution to some design problem involves a sequence of steps:

How to open digital combination lock w/ 3 buttons ("start", " 0 " and " 1 "):

Implementing a "State Machine"

This flavor of "truth-table" is called a "state transition table"

	Current state	"start"	"1"	"0"	Next state		unlock
	---	1	---	---	start	000	0
	start 000	0	0	1	digit1	001	0
	start 000	0	1	0	error	101	0
	start 000	0	0	0	start	000	0
	digit1 001	0	1	0	digit2	010	0
	digit1 001	0	0	1	error	101	0
	digit1 001	0	0	0	digit1	001	0
	digit2 010	0	1	0	digit3	011	0
starting to look like a PROGRAM -	digit3 011	0	0	1	unlock	100	0
	unlock 100	0	1	0	error	101	1
	unlock 100	0	0	1	error	101	1
	unlock 100	0	0	0	unlock	100	1
	error 101	0	---	---	error	101	0

Now Do It With Hardware!

Abstraction du jour: Finite State Machines


```
A FINITE STATE MACHINE has
- \(k\) STATES \(S_{1} \ldots S_{k}\) (one is "initial" state)
-m INPUTS \(I_{1} \ldots I_{m}\)
- n OUTPUTS \(O_{1} \ldots O_{n}\)
- Transition Rules S'(S,i) for each state \(S\) and inputi
- Output Rules Out(S) for each state S
```


Discrete State, Time

Clock

STATE

Clock	Clock	Clock	Clock	Clock
Period	Period	Period	Period	Period
1	2	3	4	5

State Transition Diagrams

 is an abstract "graph" representation of a "state transition table", where each state is represented as a node and each transition is represented as a as an arc.
It represents the machine's behavior not its
implementation!

Valid State Diagrams

MEALY Machine: Outputs on Transitions

Arcs leaving a state must be:
(1) mutually exclusive
can only have one choice for any given input value
(2) collectively exhaustive
every state must specify what happens for each possible input combination. "Nothing happens" means arc back to itself.

Let's Play State Machine

Let's emulate the behavior specified by the state machine shown below when processing the following string from LSB to MSB.

$39_{10}=\underset{\text { Oiputoreder }}{0100111_{2}}$

State				Input
Next	Output			
$\mathrm{T}=0$	SO	1	S1	0
$\mathrm{~T}=1$	S1	1	SO	1
$\mathrm{~T}=2$	SO	1	S1	0
$\mathrm{~T}=3$	S1	0	S2	0
$\mathrm{~T}=4$	S2	0	S1	0
$\mathrm{~T}=5$	S1	1	SO	1
$\mathrm{~T}=6$	SO	0	SO	1

Busted Stuff

AMBIGOUS TRANSITIONS (Mutual Exclusive property violated):
For each input there can only be one arc leaving a state
UNSPECIFIED TRANSITIONS (Collectively Exhaustive property violated):
There must be an arc leaving a state for all valid inputs
(It can, however, loop back to the same state)

FSM Party Games

1. What can you say about the number of states?

$$
\text { States } \leq 2^{k}
$$

2. Same question:

States $\leq m \times n$
3. Here's an FSM. Can you discover its rules?

What's My Transition Diagram?

$$
\begin{gathered}
O=O F F \\
1=O N ?
\end{gathered}
$$

vs.
"1111" = Surprise!

- If you know NOTHING about the FSM, you're never sure!
- If you have a BOUND on the number of states, you can discover its behavior:

> K-state FSM: Every (reachable) state can be reached in < $2^{i} \times k$ steps.

BUT ... states may be equivalent!

FSM Equivalence

ARE THEY DIFFERENT?
NOT in any practical sense! They are EXTERNALLY INDISTINGUISHABLE, hence interchangeable.

> FSMs are EQUIVALENT iff every input sequence yields identical output sequences.

ENGINEERING GOAL:

- HAVE an FSM which works...
- WANT simplest (ergo cheapest) equivalent FSM.

Housekeeping issues...

1. Initialization? Clear the memory?
2. Unused state encodings?

- waste ROM (use gates)
- meaning?

3. Synchronizing input changes with state update?
4. Choosing encoding for state?

2-Flavors of Processing Elements

Combinational Logic:
Table look-up, ROM

> Recall that there are precisely
> $2^{2^{i}}$, i-input combinational functions.
> A single ROM can store ' o ' of them.

Finite State Machines:
ROM with State Memory

Thus far, we know of nothing more powerful than an FSM

FSMs as Programmable Machines

ROM-based FSM sketch:

Given i, s, and 0 ,
we need a ROM organized as:
2^{i+5} words $\times(0+5)$ bits

How many state machines are there with
1-input, 1 -output, and 1 state bit?
$2^{(1+1) 4}=2^{8}=256$

An FSM's behavior is completely determined by its ROM contents.

FSM Enumeration

GOAL: List all possible FSMs in some canonical order.

- INFINITE list, but
- Every FSM has an entry in and an associated index.

Every possible FSM can be associated with a unique number. This requires a few wasteful simplifications. First, given an i-input, s-state-bit, and o-output FSM, we'll replace it with its equivalent n-input, n-state-bit and n-output FSM, where n is the greatest of i, s, and o . We can always ignore the extra input-bits, and set the extra output bits to 0 . This allows us to discuss the $i^{\text {th }}$ FSM

Some Perennial Favorites...

FSM 837
FSM 1077
FSM $_{1537}$
FSM $_{89143}$
FSM 22698469884
FSM 784362783
FSM ${ }_{784363783}$
modulo 3 state machine
4-bit counter
Combination lock
Cheap digital watch
Intel Pentium CPU - rev 1
Intel Pentium CPU - rev 2
Intel Pentium II CPU

Can FSMs Compute Every Function?

Nope!

There exist many simple problems that cannot be computed by FSMs.
For instance:

Checking for balanced parenthesis

$(()(()()))$	- Okay
$(()()))$	- No good!

PROBLEM: Requires ARBITRARILY many states, depending on input. Must "COUNT" unmatched LEFT parens.

But, an FSM can only keep track of a "bounded" number of events. (Bounded by its number of states)

Is there a machine that can solve this problem?

Unbounded-Space Computation

DURING 1920s \& 1930s, much of the "science" part of computer science was being developed (long before actual
 electronic computers existed). Many different
"Models of Computation" were proposed, and the classes of "functions" that each could compute were analyzed.
One of these models was the
"TURING MACHINE", named after Alan Turing (1912-1954).

A Turing Machine is just an FSM which receives its inputs and writes outputs onto an "infinite tape". This simple

Alan Turing

 addition overcomes the FSM's limitation that it can only keep track of a "bounded number of events".
A Turing Machine Example

Turing Machine Specification

- Infinite tape
- Discrete symbol positions
- Finite alphabet - say \{0, 1\}
- Control FSM INPUTS:

Current symbol on tape OUTPUTS:
write $0 / 1$
move Left/Right

- Initial Starting State \{SO\}
- Halt State $\{\mathrm{Halt}\}$

A Turing machine, like an FSM, can be specified via a state-transition table.
The following Turing Machine implements a unary (base 1) incrementer.

Current State	Tape Input	Write Tape	Move	Next State
S0	1	1	R	S0
S0	0	1	L	S 1
S1	1	1	L	S1
S1	0	0	R	Halt

Turing Machine Tapes as Integers

Canonical names for bounded tape configurations:

TMs as Integer Functions

Turing Machine T_{i} operating on Tape x, where $x=\ldots b_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$

$$
y=T_{i}[x]
$$

x : input tape configuration y: output tape when TM halts

Alternative Models of Computation

The $1^{\text {st }}$ Computer Industry Shakeout

Here's a TM that computes SQUARE ROOT!

And the Battles Raged

Here's a Lambda Expression that does the same thing...

$$
(\lambda(x) \quad \ldots . .)
$$

... and here's one that computes the $\mathrm{n}^{\text {th }}$ root for ANY n !
($\lambda(\mathrm{x} \mathrm{n}) \ldots . .$.

Fundamental Result: Computable Functions

Each model is capable of computing exactly the same set of integer functions!

Proof Technique: \quad| Constructions that |
| :--- |
| translate between |
| models |

BIG IDEA:

Every discrete function computable by ANY realizable machine is computable by some Turing machine.

This means that we know of no mechanisms (including computers) that are more "powerful" than a Turing Machine, in terms of the functions they can compute.

Computable Functions

The "input" to our computable function will be given on the initial tape, and the "output" will be the contents of the tape when the TM halts.
$f(x)$ computable <=> for some k, all x :

$$
f(x)=T_{K}[x] \equiv f_{k}(x)
$$

Representation tricks: to compute $f_{k}(x, y)$ (2 inputs) <x,y> \equiv integer whose even bits come from x, and whose odd bits come from y ; whence

$$
f_{k}(x, y) \equiv T_{k}[\langle x, y\rangle]
$$

$f_{12345}(x, y)=x * y$
$f_{23456}(x)=1$ iff x is prime, else 0

TMs, like programs, can misbehave

It is possible that a given Turning Machine may not produce a result for a given input tape. And it may do so by entering an infinite loop!
Consider the given TM.
Its scans a tape looking for the first non-zero cell to the right.

What does it do when given a tape that has no 1's to its left?

We say this TM does not halt for that input!

Enumeration of Computable functions

Conceptual table of TM behaviors... VERTICAL AXIS: Enumeration of TMs. HORIZONTAL AXIS: Enumeration of input tapes.
(j, k) entry $=$ result of $\mathrm{TM}_{\mathrm{k}}[\mathrm{j}]$-- integer, or * if never halts.

Turing Machine Tapes \longrightarrow

Every computable function is in this table, since everything that we know how to compute can be computed by a TM.

Do there exist well-specified integer functions that a TM can't compute?

The Halting Problem: Given j, k: Does TM_{k} Halt with input j?

The Halting Problem

The Halting Function: $T_{H}[k, j]=1$ iff $T_{k}[j]$ halts, else O
Can a Turing machine compute this function?

Suppose, for a moment, T_{H} exists:

What does $T_{\text {Nasty }}[$ Nasty] do?

Answer:

$$
\begin{aligned}
& T_{\text {Nasty }}[\text { Nasty }] \text { loops if } T_{\text {Nasty }}[\text { Nasty }] \text { halts } \\
& T_{\text {Nasty }}[\text { Nasty }] \text { halts if } T_{\text {Nasty }}[\text { Nasty }] \text { loops }
\end{aligned}
$$

That's a contradiction.
Thus, T_{H} is uncomputable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines simply cannot answer. Since, we know of no better model of computation than a Turing machine, this implies that there are some well-specified problems that defy computation.

Reality: Limits of Turing Machines

A Turing machine is formal abstraction that addresses

- Fundamental Limits of Computability What is means to compute. The existence of incomputable functions.
- We know of no machine more powerful than a Turing machine in terms of the functions that it can compute.

But they ignore

- Practical coding of programs
- Performance
- Implementability
- Programmability
... these latter issues are the primary focus of contemporary computer science (Remainder of Comp 411)

Computability vs. Programmability

Recall Church's thesis:

"Any discrete function computable by ANY realizable machine is computable by some Turing Machine"

Thus, we've defined what it means to COMPUTE (whatever a TM can compute)

A Turing machine is nothing more that an FSM that receives inputs from, and outputs onto, an infinite tape.

Thus far, we've been designing a new Turing machine FSM for each new function that we encounter.

Wouldn't it be nice if we could design a more general purpose computing machine?

Too many Turing machines!

Programs as Data

What if we encoded the description of the FSM on our tape, and then wrote a general purpose FSM to read the tape and EMULATE the behavior of the encoded machine? We could just store the state-transition table for our TM on the tape and then design a new TM that makes reference to it as often as it likes. It seems possible that such a machine could be built.
"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with a tape on the beginning of which is written the S.D ["standard description" of an action table] of some computing machine M, then U will compute the same sequence as M."

- Turing 1936 (Proc of the London Mathematical Society, Ser. 2, Vol. 42)

Fundamental Result: Universality

Define "Universal Function": $U(x, y)=T_{x}(y)$ for every $x, y \ldots$ Surprise! U(x, y) IS COMPUTABLE, hence $U(x, y)=T_{U}(\langle x, y\rangle)$ for some U.

Universal Turing Machine (UTM):
$T_{U}\left[\langle y, \quad z>]=T_{y}[z]\right.$
44 tape = "data"
TM = "program" "interpreter"

PARADIGM for General-Purpose Computer!

INFINITELY many UTMs ...
Any one of them can evaluate any computable function by simulating/ emulating/interpreting the actions of Turing machine given to it as an input.

UNIVERSALITY:
Basic requirement for a general purpose computer

Demonstrating Universality

Suppose you've designed Turing Machine T_{K} and want to show that its universal.
APPROACH:

1. Find some known universal machine, say T_{U}.
2. Devise a program, P, to simulate T_{U} on T_{K} :

$$
T_{k}[\langle P, x\rangle]=T_{U}[x] \text { for all } x .
$$

3. Since $T_{U}[<y, z>]=T_{Y}[z]$, it follows that, for all y and z.

$$
T_{K}[\langle P,\langle y, z\rangle\rangle]=T_{U}[\langle y, z\rangle]=T_{y}[z]
$$

CONCLUSION: Armed with program P, machine T_{K} can mimic the behavior of an arbitrary machine T_{Y} operating on an arbitrary input tape z.

HENCE T_{K} can compute any function that can be computed by any Turing Machine.

Interpretive Layers: What's going on?

$$
T_{k}\left[\left\langleP,\langle y, z \gg]=T_{u}\left[\langle y, z>]=T_{y}[z]\right.\right.\right.
$$

Multiple levels of interpretation:

$$
T_{y}[z]
$$

Application (Desired user function)

$$
T_{u}[<y, z>] \quad \text { Portable Language / Virtual Machine }
$$

$$
T_{k}[<P,<y, z \gg] \quad \text { Computing Hardware / Bare Metal }
$$

Benefits of Interpretation:
BOOTSTRAP high-level functionality on very simple hardware.
Deal with "IDEAL" machines rather than real machines.
REAL MACHINES are built this way - several interpretive layers.

Power of Interpretation

BIG IDEA: Manipulate coded representations of computing machines, rather than the machines themselves.

- PROGRAM as a behavioral description
- SOFTWARE vs. HARDWARE
- INTERPRETER as machine which takes program and mimics behavior it describes
- LANGUAGE as interface between interpreter and program
- COMPILER as translator between languages:

INTELLECTUAL BENEFITS:

- Programs as data -- mathematical objects
- Combination, composition, generation, parameterization, etc.

