
L14– Memory 1 Comp 411 – Fall 2015 10/08/2015

Memory, Latches, & Registers

1)  Structured Logic Arrays
2)  Memory Arrays
3)  Transparent Latches
4)  Saving a few bucks

at toll booths
5)  Edge-triggered Registers

L14– Memory 2 Comp 411 – Fall 2015 10/08/2015

General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
 Remember from a few lectures ago that, in theory, we can build any
 1-output combinational logic block with multiplexers.

For an N-input function we need a _____ input multiplexer.

BIG Multiplexers? How about 10-input function? 20-input?

2N

L14– Memory 3 Comp 411 – Fall 2015 10/08/2015

A Mux’s Guts

Hmmm, by sharing the decoder part of the logic MUXs could be
 adapted to make lookup tables with any number of outputs

I 0 0

I 0 1

I 1 0

I 1 1

A
B
A
B
A
B
A
B

Y

Decoder Selector Multiplexers
can be partitioned
into two sections.

A DECODER that
identifies the

desired input,and

a SELECTOR that
 enables that input
onto the output.

A decoder
generates
all possible

product
terms for
a set of
inputs

0

1

2

3

L14– Memory 4 Comp 411 – Fall 2015 10/08/2015

A New Combinational Device

k

D1
D2

DN

DECODER:

k SELECT inputs,

N = 2k DATA OUTPUTs.

Selected Dj HIGH;
all others LOW.

NOW, we are well on our way to building a general
 purpose table-lookup device.

We can build a 2-dimensional ARRAY of decoders and
 selectors as follows ...

Have I
mentioned
that HIGH

is a synonym
 for ‘1’ and

LOW means
the same

as ‘0’

L14– Memory 5 Comp 411 – Fall 2015 10/08/2015

Shared Decoding Logic

0 2 3 4 5 6 7 1

A
B
Cin

S

Cout

There’s an
extra level

of inversion
that isn’t
necessary
in the logic.
However,

it reduces
the “load” on
the module

driving
this one.

These are just
“DeMorgan”ized

NOR gates

Made from PREWIRED connections , and CONFIGURABLE
connections that can be either connected or not connected

We can build a general purpose “table-lookup” device called
a Read-Only Memory (ROM), from which we can implement
any truth table and, thus, any combinational device

Decoder

Configurable Selector

This ROM stores 16 bits
in 8 words of 2 bits.

L14– Memory 6 Comp 411 – Fall 2015 10/08/2015

ROM Implementation Details

Hardwired “AND” logic
Programmable “OR” logic

Advantages:
 - Very regular design
 (can be entirely
 automated)

 Problems:
 - Active Pull-ups
 (Static Power)
 - Long metal runs
 (Large Caps)
 - Slow

A

B

Cin

S
Cout

JARGON:
Inputs to

a ROM
are called

ADDRESSES.
The decoder’s
outputs are

called
WORD LINES,

and the
outputs lines

of the
selector are

called
BIT LINES.

Tiny PFETs with gates tied to ground = resistor pullup that
 makes wire “1” unless one of the NFET pulldowns is on.

Decoder Values: 0 1 2 3 4 5 6 7

A “word”-line.

A “bit”-line

These
 transistors
 are function
 “dependent”

These
 transistors
 implement a

 decoder,
 and are

 independent

 of function.

L14– Memory 7 Comp 411 – Fall 2015 10/08/2015

Logic According to ROMs
ROMs ignore the structure of combinational functions ...

• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by
 minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...

... for an N-input boolean function, size = __________ 2N x #outputs

L14– Memory 8 Comp 411 – Fall 2015 10/08/2015

Example: 7-sided Die
What nature can’t provide… electronics can

 (and with the same number of LEDs!).

We want to construct a die with the following sides:

An array of LEDs, labeled as follows, can be used to display the
 outcome of the die:

T
V X

U

Y Z

W

L14– Memory 9 Comp 411 – Fall 2015 10/08/2015

ROM-Based Design

Once we’ve written out
 the truth table we’ve
 basically finished the
 design

Possible optimizations:
- Eliminate redundant

 outputs
- Addressing tricks

Truth Table for a 7-sided Die

T

V X

U

Y Z

W

L14– Memory 10 Comp 411 – Fall 2015 10/08/2015

A Simple ROM implementation

A

B

C

T/Z
U/Y
V/X
W

That was Easy!
ROMs are even more flexible than
 MUXes, because you can design the
 H/W first, and figure out the logic
 later!

This is the essence of programability:
“LATE-BINDING” logic specification.

T

V X

U

Y Z

W

Decoder Values: 0 1 2 3 4 5 6 7

L14– Memory 11 Comp 411 – Fall 2015 10/08/2015

“Programmable” Look-up Tables
Remember, EVERY combinational circuit can be expressed
 as a lookup table. As a result a ROM is a universal logic
 device. Unfortunately, the ROMs we’ve built thus far are
 “HARDWIRED”. That is, the function that they compute is
 encoded by the pull-down transistors that are built into
 the OR-plane of the ROM. What we’d really like is a
 combinational gate that could be reconfigured
 dynamically. For this we’ll need some form of storage.

WORD line

BIT line

How to
 “store” a

 “bit”?
The function of a

 ROM is
 determined by the

 presence of a
 transistor at the
 intersection of a
 WORD line from
 the AND array
 with a BIT line

 going to the OR
 array

L14– Memory 12 Comp 411 – Fall 2015 10/08/2015

Analog Storage: Using Capacitors

We’ve chosen to encode information using voltages and we know
 from physics that we can “store” a voltage as “charge” on a
 capacitor:

bit line

N-channel
FET serves

as an
access
switch

VREF

Pros:
 ! compact!
Cons:
 ! it leaks! ⇒ refresh
 ! complex interface
 ! reading a bit, destroys it
 (you have to rewrite the value after each read)

! it’s NOT a digital circuit

To write:
 Drive bit line, turn on access fet,
 force storage cap to new voltage
To read:
 precharge bit line, turn on access fet,
 detect (small) change in bit line voltage

word line

This storage circuit is the basis
 for commodity DRAMs

L14– Memory 13 Comp 411 – Fall 2015 10/08/2015

Dynamic Memory

TiN top
electrode

 (VREF)

Ta2O5
dielectric

poly
word
line

access FET

L14– Memory 14 Comp 411 – Fall 2015 10/08/2015

Y

S

B

A “Digital” Storage Element

It’s also easy to build a settable DIGITAL storage element
 (called a latch) using a MUX and FEEDBACK:

0

1

G

0
0
1
1

D

--
--
0
1

QIN

0
1
--
--

QOUT

0
1
0
1

Q follows D

Q stable

“state” signal
appears as both
input and output

A

D

G

Q

Here’s a feedback path,
so it’s no longer a
combinational circuit.

L14– Memory 15 Comp 411 – Fall 2015 10/08/2015

Looking Under the Covers
Let’s take a quick look at the equivalent circuit for our MUX

 when the gate is LOW (the feedback path is active)

D
G=0

Q Q

G=0

D

0

1

1

1
Q

This storage circuit is the
 basis for commodity SRAMs

Advantages:
 1) Maintains remembered state for as
 long as power is applied.
 2) State is DIGITAL
Disadvantage:
 1) Requires more transistors

L14– Memory 16 Comp 411 – Fall 2015 10/08/2015

Why Does Feedback = Storage?

BIG IDEA: use positive feedback to maintain storage
 indefinitely. Our logic gates are built to restore marginal
 signal levels, so noise shouldn’t be a problem!

VIN VOUT

Result: a bistable
 storage element

Feedback constraint:
VIN = VOUT

VTC for
inverter pair

VIN

VOUT Three solutions:
 ! two end-points are stable
 ! middle point is unstable

Not affected
by noise

We’ll get back to this!

L14– Memory 17 Comp 411 – Fall 2015 10/08/2015

Static D Latch

G

D Q

D

G

Q stable

Q follows D

Positive latch

Q

“static” means latch will hold data (i.e., value of Q) while G is inactive,
 however long that may be.

G

D Q

Negative latch

Q

G

D

1

0

What is the
difference?

L14– Memory 18 Comp 411 – Fall 2015 10/08/2015

A DYNAMIC Discipline
Design of sequential circuits MUST guarantee that inputs to sequential
 devices are valid and stable during periods when they may influence state
 changes. This is assured with additional timing specifications.

G

D

>tPULSE

tPULSE: minimum pulse width
guarantee G is active for long enough for latch to capture data

>tSETUP

tSETUP: setup time
guarantee that D value has propagated through feedback path before latch closes

>tHOLD

tHOLD: hold time
guarantee latch is closed and Q is stable before allowing D to change

>tCD <tPD

tCD: minimum contamination delay
the soonest that an output will change in response to an input changing

tPD: maximum propagation delay
the latest that an output will become valid in response to an input changing

These timing
 specs relate
 changes in
 inputs to
 changes in
 output

These relate to
 changes
 between
inputs

If tcd isn’t provided,
 you can safely
 assume it is 0. Q

G

D Q

L14– Memory 19 Comp 411 – Fall 2015 10/08/2015

Storage alone is not enough!

ROM
64x4

unlock

Next
“state”

Current
“state”

“1” button

“0” button

“start” button

3 3

D Q

G Hmm. Hard to get pulse
 width exactly right!

We need to
 open the gate
 long enough
 to capture
 the output of
 the ROM, but
 no so long
 that it the
 ROM
 responds to
 its new input
 before the
 gate closes.
 Opening gates
 is tricky!

L14– Memory 20 Comp 411 – Fall 2015 10/08/2015

Flakey Control Systems

Here’s a strategy
 for saving 2
 bucks the next
 time you find
 yourself at a toll
 booth!

L14– Memory 38 Comp 411 – Fall 2015 10/08/2015

Escapement Strategy

The Solution:
 Add two gates
 and only open
 one at a time.
 (Psst… Don’t
 tell the toll
 folks)

KEY: At no time is there an open
 path through both gates…

L14– Memory 39 Comp 411 – Fall 2015 10/08/2015

G

D Q

G

D Q

Edge-triggered Flip Flop
logical “escapement”

D Q D

CLK

Q D

CLK

Q
master slave

Observations:
!  only one latch “transparent” at any time:

!  master closed when slave is open (CLK is high)
!  slave closed when master is open (CLK is low)

 → no combinational path through flip flop

! Q only changes shortly after 0 →1 transition of
 CLK, so flip flop appears to be “triggered” by rising
 edge of CLK

Transitions mark
 instants, not

 intervals

L14– Memory 40 Comp 411 – Fall 2015 10/08/2015

Flip Flop Waveforms

G

D Q

G

D Q D Q D

CLK

Q D

CLK

Q
master slave

D

CLK

Q

master closed
slave open

slave closed
master open

L14– Memory 41 Comp 411 – Fall 2015 10/08/2015

Two Issues

G

D Q

G

D Q D Q
master slave

CLK

• Must allow time for the input’s value to propagate to the
 Master’s output while CLK is LOW.

•  This is called “SET-UP” time

• Must keep the input stable, just after CLK transitions to
 HIGH. This is insurance in case the SLAVE’s gate opens just
 before the MASTER’s gate closes.

•  This is called “HOLD-TIME”

•  Can be zero (or even negative!)

•  Assuring “set-up” and “hold” times is what limits a
 computer’s performance

(How long a D input must
valid before the clock rises)

(How long a D input must “remain”
 valid after the clock rises)

L14– Memory 42 Comp 411 – Fall 2015 10/08/2015

Flip-Flop Timing Specs

CLK

D

Q
D Q D

CLK

Q
<tPD

tPD: maximum propagation delay, CLK →Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change

L14– Memory 43 Comp 411 – Fall 2015 10/08/2015

Summary
• Regular Arrays can be used to implement arbitrary logic functions

•  ROMs decode every input combination (fixed-AND array)
 and compute the output for it (customized-OR array)
•  PLAs decode an minimal set of input combinations
 (both AND and OR arrays customized)

• Memories
•  ROMs are HARDWIRED memories
•  RAMs include storage elements at each WORD-line
 and BIT-line intersection
•  dynamic memory: compact, only reliable short-term
•  static memory: controlled use of positive feedback

• Level-sensitive D-latches for static storage
• Dynamic discipline (setup and hold times)

