Binary Multipliers

The key trick of multiplication is memorizing a digit-to-digit table... Everything else is just adding

\times	0	1
0	0	0
1	0	1

\times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

You've got to be kidding... It can't be that easy

Have We Forgotten Something?

Our ALU can add, subtract, shift, and perform Boolean functions. But, even rabbits know how to multiply...

But, it is a huge step in terms of logic... Including a multiplier unit in an ALU doubles the number of gates used.

A good (compact and high performance) multiplier can also be tricky to design. Here we will give an overview of some of the tricks used.

Binary Multiplication
 The "Binary"

Multiplication
Table

Binary multiplication is implemented using the same basic longhand algorithm that you learned in grade school.

$$
\begin{array}{rlll}
A_{3} & A_{2} & A_{1} & A_{0} \\
\times & B_{3} & B_{2} & B_{1} \\
\hline
\end{array}
$$

$A_{j} B_{i}$ is a "partial product" $\longrightarrow A_{3} B_{0} \quad A_{2} B_{0} \quad A_{1} B_{0} \quad A_{0} B_{0}$
$\begin{array}{llll}A_{3} B_{1} & A_{2} B_{1} & A_{1} B_{1} & A_{0} B_{1}\end{array}$
$A_{3} B_{2} \quad A_{2} B_{2} \quad A_{1} B_{2} \quad A_{0} B_{2}$
$+A_{3} B_{3} \quad A_{2} B_{3} \quad A_{1} B_{3} \quad A_{0} B_{3}$

Multiplying N-digit number by M-digit number gives ($N+M$)-digit result
Easy part: forming partial products (just an AND gate since B_{1} is either O or 1) Hard part: adding M, N-bit partial products

Multiplying in Assembly

One can use this "Shift and Add" approach to write a

 multiply function in assembly language

Multiplier Unit-Block

We introduce a new abstraction to aid in the construction of multipliers called the "Unsigned Multiplier Unit-block"

We did a similar thing last lecture when we converted our adder to an add/subtract unit.
A_{k} are bits of the Multiplicand and B_{i} are bits of the Multiplier.

The PP inputs and outputs represent "partial products" which are partial results from adding together shifted instances of the Multiplicand.

The initial PP_{0} is zero.

Simple Combinational Multiplier

is this faster
than our
assembly code?

To determine the timing specification of a composite combinational circuit we find the worst -case path for every output to any input.

NB: this circuit only works for nonnegative operands

"Carry-Save" Combinational Multiplier

Observation: Rather than propagating the carries to the next adder in each row, they can instead be forwarded to the next column of the following row

$$
\begin{aligned}
& t_{P D}=8 * t_{P D} \\
& t_{P D}=(N+N) * t_{P D}
\end{aligned}
$$

Components
Ap

$$
\mathrm{N}^{2} \text { *FA }
$$

Higher-Radix Multiplication

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of rows and halve the latency of the multiplier!

Booth Recoding of Multiplier

current bit pair from previous bit pair

		$B_{2 K+1} B_{2 K}$	$B_{2 K-1}$	action		An encoding where each bit has the
following weights:						

Yep! Booth recoding works for 2-Complement integers, now we can build a signed multiplier.

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding $4^{*} A$ in the previous stage is like adding A in this stage!

Booth Recoding

Logic surrounding each basic adder:

- Control lines (x2, Sub, Zero) are shared across each row
- Must handle the "+1" when Sub is 1 (extra half adders in a carry save array)

NOTE:

- Booth recoding can be used to implement signed multiplications

Bigger Multipliers

- Using the approaches described we can construct multipliers of arbitrary sizes, by considering every adder at the "bit" level
- We can also, build bigger multipliers using smaller ones

- Considering this problem at a higher-level leads to more "non-obvious" optimizations

Can We Multiply With Less?

- How many operations are needed to multiply 2, 2-digit numbers?
- 4 multipliers

4 Adders

- This technique generalizes
- You can build an 8-bit multiplier using 44-bit multipliers and 4 8-bit adders

$-O\left(\mathrm{~N}^{2}+\mathrm{N}\right)=O\left(\mathrm{~N}^{2}\right)$

An $O\left(N^{2}\right)$ Multiplier In Logic

The functional blocks would look like

A Trick

- The two middle partial products can be computed using a single multiplier and other partial products
- $D A+C B=(C+D)(A+B)-(C A+D B)$
$A B$
- 3 multipliers

8 adders

- This can be applied recursively (i.e. applied within each partial product)
- Leads to $O\left(\mathrm{~N}^{1.58}\right)$ adders
- This trick is becoming more popular as N grows. However, it is less regular, and the overhead of the extra adders is high for small N

Let's Try it By Hand

1) Choose 2, 2 digit numbers to multiply $a b \times c d$

$$
42 \times 37
$$

2) Multiply $p_{1}=a \times c, p_{2}=b \times d, p_{3}=(c+d)(a+b)$

$$
\begin{gathered}
p_{1}=4 \times 3=12, p_{2}=2 \times 7=14 \\
p_{3}=(4+2)(3+7)=60
\end{gathered}
$$

3) Find partial subtracted sum, $S S=p_{3}-\left(p_{1}+p_{2}\right)$

$$
S S=60-(12+14)=34
$$

4) Add to find product, $p=100^{*} p_{1}+10^{*} S S+p_{2}$

$$
p=1200+340+14=1554=42 \times 37
$$

An $O\left(N^{1.58}\right)$ Multiplier In Logic

The functional blocks would look like

$A B$
$\times \quad C D$
$D B$
$S S$
$C A$

Where $S S=(C+D)(A+B)-(C A+D B)$

Binary Division

- Division merely reverses the process
- Rather than adding successively larger partial products, subtract successively smaller divisors
- When multiplying, we knew which partial products to actually add (based on the whether the corresponding bit was a O or a 1)
- In division, we have to try *both ways*

Multiplication

Upside-down

Restoring Division

Start: Align MSBs of Divisor and Remainder, $\mathrm{K}=$ number of bits shifted, Quotient $=0$

Division Example

Step 1:		
R D	D	Q
$42 \div 7$	$\div 7=$	$=6$
Start:		
Q =		$0=00000000$
$\mathrm{R}=$	42	$2=00101010$
$\mathrm{D}=$ (7	(7*8)	$8)=00111000$
Note: $\mathrm{K}=3$, so repeat 4 times		
Subtract:		
$\mathrm{R}=42=00101010$		
$D=-(7 * 8)=00111000$		
		$14=11110001$
Restore:		
$\mathrm{R}=42=00101010$		
Shifts:		
Q = 00000000		
D $=00011100$		

Shifts:

$\mathbf{Q}=00000001$
$\mathbf{D}=00001110$

Division Example (cont)

Step 3:
R

$42 \div 7=$$\quad$| Q |
| :--- |
| 6 |

$\mathrm{Q}=1=00000001$
$\mathbf{R}=14=00001110$
$D=(7 * 2)=00001110$
Subtract:
$R=14=00001110$
$\begin{array}{r}D=-(7 * 2)=00001110 \\ \hline 0=00000000\end{array}$
No Restore
Shifts:

$$
\begin{aligned}
& \mathbf{Q}=00000011 \\
& \mathbf{D}=00000111
\end{aligned}
$$

Division Big Boxes

We can use this algorithm to design a combinational divider. It takes as inputs a divisor, R, a dividend, D, and outputs a quotient and a remainder.

Dividing is generally slower than multiplication.

The worst case
One quotient-bit per adder stage propagation delay waits for every adder stage to generate its most significant bit, thus, each stage has to waiting for the full sum from the previous stage to complete.

Next Time

- We dive into floating point arithmetic

