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Binary Multipliers 

× 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 10 12 14 16 18 

3 0 3 6 9 12 15 18 21 24 27 

4 0 4 8 12 16 20 24 28 32 36 

5 0 5 10 15 20 25 30 35 40 45 

6 0 6 12 18 24 30 36 42 48 54 

7 0 7 14 21 28 35 42 49 56 63 

8 0 8 16 24 32 40 48 56 64 72 

9 0 9 18 27 36 45 54 63 72 81 

× 0 1 

0 0 0 

1 0 1 

You’ve got to be
 kidding… It can’t
 be that easy 

The key trick of multiplication is memorizing
 a digit-to-digit table…  
Everything else is just adding 
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Have We Forgotten Something? 
Our ALU can add, subtract, shift, 

and perform Boolean functions. 
But, even rabbits know how to 
multiply… 

But, it is a huge step in terms of logic…  
Including a multiplier unit in an ALU  
doubles the number of gates used. 

A good (compact and high performance) multiplier can also
 be tricky to design. Here we will give an overview of some
 of the tricks used. 
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Binary Multiplication 

A0 A1 A2 A3 
B0 B1 B2 B3 

A0B0 A1B0 A2B0 A3B0 

A0B1 A1B1 A2B1 A3B1 

A0B2 A1B2 A2B2 A3B2 

A0B3 A1B3 A2B3 A3B3 

x 

+ 

AjBi is a “partial product” 

Multiplying N-digit number by M-digit number gives (N+M)-digit result 

Easy part: forming partial products (just an AND gate since BI is either 0 or 1) 
Hard part: adding M, N-bit partial products 

1 0 1 
0 0 0 
1 0 X 

The “Binary”
 Multiplication

 Table 

Hey, that
 looks like an
 AND gate 

Binary multiplication is implemented using
 the same basic longhand algorithm that
 you learned in grade school. 
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000001010000000101 

Multiplying in Assembly 
One can use this “Shift and Add” approach to write a
 multiply function in assembly language   

#   Multiplies unsigned arguments in $a0 and $a1 !
#   and returns value in $v0 ignoring overflows !
multu:  addiu    $v0,$0,0       # zero product register !
loop:   andi     $t1,$a0,1      # check low-order bit !
        beq      $t1,$0,noadd   # do we need to add? !
        add      $v0,$v0,$a1    # add multiplicand to product !
noadd:  srl      $a0,$a0,1      # multiplier / 2 !
        sll      $a1,$a1,1      # 2 * multiplicand !
        bne      $a0,$0,loop    # keep adding if there are !
        jr       $31 !

Multiplicand a0: a1: 

Product a0 * a1 = v0: 

Multiplicand 
Multiplicand 

Multiplicand 
Multiplicand 

Multiplier 

Hum, maybe
 we could do
 something
 more clever. 
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Multiplier Unit-Block 

   A       B 
CO          CI 
        S 

FA 

Ai 

Bi Subtract 

Ci Ci-1 

Si 

Add/Subtract  
Unit Block 

   A       B 
CO          CI 
        S 

FA 

ppi-1 

Ak Bi 

Ck Ck-1 

ppi 

Unsigned 
Multiply 

Unit Block 

We introduce a new abstraction to  
aid in the construction of multipliers 
called the “Unsigned Multiplier Unit-block” 

We did a similar thing last lecture when we
 converted our adder to an add/subtract
 unit. 

Ak are bits of the Multiplicand and Bi are
 bits of the Multiplier. 

The PP inputs and outputs represent 
“partial products” which are partial 
results from adding together shifted 
instances of the Multiplicand.  

The initial PP0 is zero. 
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Simple Combinational Multiplier 

tPD = 10 * tPD 

not 16 

NB: this circuit only
 works for
 nonnegative
 operands 

Components 
N * HA 

N(N-1) * FA 

The Logic 
of a  
Half- 
Adder 

CO 

A B 

S 

HA 
               A 
Co              B 
         S 

HA 
               A 
Co              B 
         S 

HA 
               A 
Co              B 
         S 

HA 
               A 
Co              B 
         S 

tPD = (2*(N-1) + N) * tPD 

To determine the
 timing specification
 of a composite
 combinational circuit
 we find the worst
-case path for every
 output to any input.  

Is this faster
 than our
 assembly code? 
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“Carry-Save” Combinational Multiplier 

tPD = 8 * tPD 

Components 
N * HA 
N2 * FA 

Observation: Rather than
 propagating the carries to
 the next adder in each row,
 they can instead be
 forwarded to the next
 column of the following row 

This small
 performance
 improvement 
 hardly
 seems worth
 the effort,
 however, this
 design is
 easier to
 “pipeline”.  

These
 Adders
 can be
 removed,
 and the
 AND gate
 outputs
 tied
 directly to
 the Carry
 inputs of
 the next
 stage. 

tPD = (N+N) * tPD 
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BK+1,K*A = 0*A 
              = 1*A 
              = 2*A   Just a shift 
              = 3*A   Requires adding!

Higher-Radix Multiplication 

       AN-1   AN-2   …   A3   A2  A1   A0 
       BM-1   BM-2   …   B3   B2   B1   B0 x 

... 

2 M/2 

Idea: If we could use, say, 2 bits of the multiplier in generating each partial
 product we would halve the number of rows and halve the latency of the
 multiplier! 

BK+1,K*A = 0*A ! 0 
              = 1*A ! A 
              = 2*A ! 2A  or  4A – 2A 
              = 3*A ! 4A – A!

Booth’s insight: rewrite 2*A
 and 3*A cases, leave 4A for
 next partial product to do!  
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Booth Recoding of Multiplier 

B2K+1 

0 
0 
0 
0 
1 
1 
1 
1 

B2K 

0 
0 
1 
1 
0 
0 
1 
1 

B2K-1 

0 
1 
0 
1 
0 
1 
0 
1 

action 

add 0 
add A 
add A 

add 2*A 
sub 2*A 
sub A 
sub A 
add 0 

A “1” in this bit means the previous stage needed
 to add 4*A.  Since this stage is shifted by 2
 bits with respect to the previous stage, adding
 4*A in the previous stage is like adding A in this
 stage! 

-2*A+A 

-A+A 

from previous bit pair current bit pair 

An encoding where
 each bit has the
 following weights: 

W(B2K+1) = -2 * 22K 

W(B2K) = 1 * 22K 
W(B2K-1) = 1 * 22K 

-89 = 1 0 1 0 0 1 1 1 .0 
= -1 * 20        (-1) 
+ 2 * 22         (8) 

+ (-2) * 24  (-32) 

+ (-1) * 26   (-64) 

Hey, isn’t
 that a

 negative
 number? 

-89 

Yep! Booth recoding
 works for 2-Complement
 integers, now we can
 build a signed multiplier. 
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Booth Recoding 

   A       B 
CO          CI 
        S 

FA 

0     1 x2 
Sub 

Zero 

Ai    Ai-1 
Logic surrounding  

 each basic adder: 

 - Control lines (x2, Sub,  Zero) are 
    shared across each row 
 - Must handle the “+1” when Sub is 1 
   (extra half adders in a carry save 
     array) 

NOTE: 
 - Booth recoding can be used to 
    implement signed multiplications 

B2K+1 B2K B2K-1  x2 Sub Zero 

0      0     0      X    X      1 
0      0     1       0    0    0 
0      1      0      0    0    0 
0      1      1        1     0    0 
1       0     0       1     1     0 
1       0     1        0    1     0 
1       1      0       1     1     0 
1       1      1        X     X     1 

Signed 
Multiply 

Unit Block 
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Bigger Multipliers 

•  Using the approaches described we can construct
 multipliers of arbitrary sizes, by considering every adder
 at the “bit” level 

•  We can also, build bigger multipliers using smaller ones 

•  Considering this problem at a higher-level leads to more
 “non-obvious” optimizations 

× 

A 
      4 

B 
      4 

   4 

PHI 

   4 

PLO 
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Can We Multiply With Less? 

•  How many operations are needed to multiply 2, 2-digit
 numbers? 

•  4 multipliers 
4 Adders 

•  This technique generalizes 
–  You can build an 8-bit multiplier using 

4 4-bit multipliers and 4 8-bit adders 
–  O(N2 + N) = O(N2) 

                 A B 
      X    C D 
            DB 
          DA 
          C B 
        CA 

+ 
+ 

+ 
+ 
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An O(N2) Multiplier In Logic 

The functional blocks would look like 

Mult Mult Mult Mult 

B   C                A                 D                 B 

Add Add 

Add Add HA 

Product bits 

                 A B 
      X    C D 
            DB 
          DA 
          C B 
        CA 
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A Trick 

•  The two middle partial products can be computed using
 a single multiplier and other partial products 

•  DA + CB = (C + D)(A + B) – (CA + DB) 
•  3 multipliers 

8 adders 
•  This can be applied recursively 

(i.e. applied within each partial product) 
•  Leads to O(N1.58) adders 
•  This trick is becoming more popular  

as N grows. However, it is less regular,  
and the overhead of the extra adders  
is high for small N 

                 A B 
      X    C D 
            DB 
          DA 
          C B 
        CA 
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Let’s Try it By Hand 

1)  Choose 2, 2 digit numbers to multiply     ab × cd 

    42 x  37 
2)  Multiply p1 = a x c,  p2 = b x d, p3 = (c + d)(a + b) 

p1 = 4 x 3 = 12, p2 = 2 x 7 = 14,  
p3 = (4+2)(3+7) = 60 

3)  Find partial subtracted sum, SS = p3 – (p1 + p2) 
   SS = 60 – (12 + 14) = 34 

4)  Add to find product, p = 100*p1 + 10*SS + p2 

 p = 1200 + 340 + 14 = 1554 = 42 x 37 

42 x 37 = ? 
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An O(N1.58) Multiplier In Logic 

The functional blocks would look like 

Mult 

Mult 

Mult 

C  A                                 D  B  

Add Add 

Add Add 

HA 

Product bits 

Add Add 

Add Add 

                 A B 
      X    C D 
            DB 
         SS 
       CA 

Where  
    SS = (C+D)(A+B) – (CA+DB) 

SS 

Note: Adders with
 a bubble on one
 of their inputs
 becomes a
 subtractor in
 this notation. 
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Binary Division 

•  Division merely reverses the process 
–  Rather than adding successively larger partial products,

 subtract successively smaller  divisors 
–  When multiplying, we knew which partial products to actually add

 (based on the whether the corresponding bit was a 0 or a 1)  
–  In division, we have to try *both ways* 

Multiplication
 Upside-down 

    P P P P P P P P 
-     D D D D          Q3 = 0 or 1? 
-       D D D D        Q2 = 0 or 1? 
-         D D D D      Q1 = 0 or 1? 
-           D D D D    Q0 = 0 or 1? 
            R R R R 
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Restoring Division 
Start: Align MSBs of Divisor and Remainder, K = number of bits shifted, Quotient = 0 

Subtract Divisor from the  
Remainder leave the result  

in the Remainder 

Test Remainder 

Shift Quotient left one bit 
set rightmost bit = 1 

Restore Remainder by adding Divisor 
Shift Quotient left one bit 

set rightmost bit = 0 

Shift Divisor right one bit 

Repeat K+1 
times 

≥ 0 < 0 
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Division Example 
Step 1: 
 R   D       Q 
42 ÷ 7  =    6 

Start: 
Q =    0  =  00000000 
R =   42  =  00101010 
D = (7*8) =  00111000 

Subtract: 
R =    42  = 00101010 
D = -(7*8) = 00111000 
      -14  = 11110001 
Restore: 
R =    42  = 00101010 

Shifts: 
         Q = 00000000 
         D = 00011100 

Step 2: 
 R   D       Q 
42 ÷ 7  =    6 

Q =    0  =  00000000 
R =   42  =  00101010 
D = (7*4) =  00011100 

Subtract: 
R =    42  = 00101010 
D = -(7*4) = 00011100 
R =    14  = 00001110 

Shifts: 
         Q = 00000001 
         D = 00001110 

Note: K = 3, so repeat 4 times 
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Division Example (cont) 
Step 3: 
 R   D       Q 
42 ÷ 7  =    6 

Q =    1  =  00000001 
R =   14  =  00001110 
D = (7*2) =  00001110 

Subtract: 
R =    14  = 00001110 
D = -(7*2) = 00001110 
        0  = 00000000 

No Restore 
Shifts: 
         Q = 00000011 
         D = 00000111 

Step 4: 
 R   D       Q 
42 ÷ 7  =    6 

Q =    3  =  00000011 
R =    0  =  00000000 
D =    7  =  00000111 

Subtract: 
R =     0  = 00000000 
D =    -7  = 00000111 
       -7  = 11111001 
Restore: 
R =     0  = 00000000 
Shifts: 
         Q = 00000110 
         D = 00000011 
         R = 00000000 
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Division Big Boxes 

Shift Left N 

D R 

R’ 

Add 

mux 0                    1 
Shift Right  

qN-1 

Add 

0                    1 
Shift Right  

qN-2 

mux 

Add 

0                    1 
Shift Right  

qN-3 

mux 

Remainder 

One quotient-bit 
per adder stage 

We can use this algorithm to
 design a combinational divider.
 It takes as inputs a divisor, R, a
 dividend, D, and outputs a
 quotient and a remainder. 

Dividing is generally slower than
 multiplication. 

The worst case  
propagation delay waits for every
 adder stage to generate its
 most significant bit, thus, each
 stage has to waiting for the full
 sum from the previous stage to
 complete. 
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Next Time 

•  We dive into floating point arithmetic 


