
L11 – Arithmetic Circuits 1 Comp 411 – Fall 2015 9/29/2015

Arithmetic Circuits

01011
+00101
10000

Didn’t I learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to
be...

Finally; time to
 build some

 serious
 functional

 blocks

The
imag
e
cann

The
image
cannot

The image
cannot be
displayed.
Your

The
image
cannot

The image
cannot be
displayed.

We’ll need
 a lot of
 boxes

L11 – Arithmetic Circuits 2 Comp 411 – Fall 2015 9/29/2015

Review: 2’s Complement

20 21 22 23 … 2N-2 -2N-1 … …
N bits

8-bit 2’s complement example:
 11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the same
 binary addition procedure will work for adding both signed and unsigned
 numbers.

By moving the implicit “binary” point, we can represent fractions too:
 1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “binary” point
Range: – 2N-1 to 2N-1 – 1

L11 – Arithmetic Circuits 3 Comp 411 – Fall 2015 9/29/2015

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101
B:+ 0101

10010

1 0 1 1
Carries from

previous column
Adding two N-bit
 numbers produces
 an (N+1)-bit result

Then we can cascade them to add two numbers of any size…

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

A3 B3 A2 B2 A1 B1 A0 B0

S4 S3 S2 S1 S0

Let’s start by building a block that adds one column:

 A B
CO CI
 S

FA

L11 – Arithmetic Circuits 4 Comp 411 – Fall 2015 9/29/2015

Designing a Full Adder: From Last Time

1)  Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3) Simplifing a bit

Co = Ci(A + B) + AB
S = Ci ⊕ A ⊕ B

Co = Ci(A ⊕ B) + AB
S = Ci ⊕ (A ⊕ B)

L11 – Arithmetic Circuits 5 Comp 411 – Fall 2015 9/29/2015

For Those Who Prefer Logic Diagrams …

•  A little tricky, but only
5 gates/bit

CI

A B

S

CO

Co = Ci(A ⊕ B) + AB
S = Ci ⊕ (A ⊕ B)

“Sum”
Logic

“Carry”
Logic

L11 – Arithmetic Circuits 6 Comp 411 – Fall 2015 9/29/2015

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about
 the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.
 Operation selected by control input:

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

A3 A2 A1 A0

S4 S3 S0 S1 S0

 B3 B2 B1 B0
Subtract

~ = bit-wise complement

B
0

B B
1

B

L11 – Arithmetic Circuits 7 Comp 411 – Fall 2015 9/29/2015

Condition Codes

Besides the sum, one often wants four other bits
 of information from an arithmetic unit:

V (overflow): indicates that the answer has
 too many bits to be represented correctly by
 the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
 significant position produced a carry, e.g.,
“1 + (-1)” from last FA

€

V = AN −1BN −1N +A N −1B N −1N

€

V =CON −1⊕ CIN −1
-or-

!
!
!

Z
S7
S6
S5
S4
S3
S2
S1
S0

S31
S30
S29
S28
S27
S26
S25
S24

Is that a
NOR gate?

To compare A and B,
 perform A–B and use
condition codes:

Signed comparison:
 LT N⊕V
 LE Z+(N⊕V)
 EQ Z
 NE ~Z
 GE ~(N⊕V)
 GT ~(Z+(N⊕V))

Unsigned comparison:
 LTU C
 LEU C+Z
 GEU ~C
 GTU ~(C+Z)

L11 – Arithmetic Circuits 8 Comp 411 – Fall 2015 9/29/2015

TPD of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when
 adding 11…111 to 00…001.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR ≈ Θ(N)

CI to CO CIN-1 to SN-1

Θ(N) is read “order N” and tells us that the latency of our adder
 grows in proportion to the number of bits in the operands.

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

 An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

 Sn-1 Sn-2 S2 S1 S0

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA C
…

CI

A B

S

CO
A0,B0 to CO0

L11 – Arithmetic Circuits 9 Comp 411 – Fall 2015 9/29/2015

Faster Carry Logic
Let’s see if we can improve the speed by first “rewriting”
and then “reinterpreting” the equations for COUT:

COUT = AB + ACIN + BCIN

 = AB + (A + B)CIN

 = G + P CIN where G = AB and P = A + B

generate propagate

To generate the Carry of the Nth bit:

CN = GN-1 + PN-1CN-1

 = GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

 = GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

Actually, P was can
be either A + B or
A ⊕ B, because the
G = AB term of COUT
handles the only case
where they differ.

CN in only 3 levels of logic!
 1 for P/G generation, 1 for ANDs, 1 for final OR

CI

A B

S

CO

G P

L11 – Arithmetic Circuits 10 Comp 411 – Fall 2015 9/29/2015

N-Bit Addition in Constant Time?

So if we had (N+1)-input gates and didn’t mind a lot of
 loading on the P signals, the propagation delay of adder
 built using P/G equation to compute CIN of each bit would
 be:

 4 gate delays ≈ O(1) (independent of N)

Recall large fan-in gates (many inputs) are implemented
 using trees (see last lecture). So for large N we expect more
 like O(log2N) gate delays. This concept does lead to some
 interesting adder designs:

" faster ripple-carry implementations
" hierarchical carry-lookahead adders

L11 – Arithmetic Circuits 11 Comp 411 – Fall 2015 9/29/2015

Carry-Lookahead Adders (CLA)
We can build a hierarchical carry-lookahead chain by generalizing our
 definition of the Carry Generate/Propagate (GP) Logic. We start by
 dividing our addend into two parts, a higher part, H, and a lower part,
 L. The GP function can be expressed as follows:

GHL = GH + PH GL

PHL = PH PL

Generate a carry out if the high part generates one,
 or if the low part generates one and the high part
 propagates it. Propagate a carry if both the high
 and low parts propagate theirs.

Hierarchical
 building block

GH PH

GHL PHL

GP
GL

PL

P/G generation

1st level of
lookahead

 A B
CO C I
 G P S

FA
 A B
CO C I
 G P S

FA

GH PH

GHL PHL

GP
GL

PL

PL

PH

GH PHL

GL

GH

L11 – Arithmetic Circuits 12 Comp 411 – Fall 2015 9/29/2015

8-bit CLA (GP Generation)

Log2(N)

GH PH GL

GHL PHL PL

GP

A B
CO CI
G P S

FA
A B

CO CI
G P S

FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI
G P S

FA
A B

CO CI
G P S

FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI
G P S

FA
A B

CO CI
G P S

FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI
G P S

FA
A B

CO CI
G P S

FA

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

We can build a tree of GP units to compute the generate and propagate
 logic for any sized adder. For a 2N-bit adder, we need 2N-1 GP units.

 C = G7 + P7 G6 + P7 P6G5 + P7 P6P5G4 + … + P7 ...P0CIN

P7-0

G7-0 P7-0

G7-0

G3-0 P3-0

G1-0 P1-0 G3-2 P3-2

G7-4 P7-4

G5-4 P5-4 G7-6 P7-6

L11 – Arithmetic Circuits 13 Comp 411 – Fall 2015 9/29/2015

8-bit CLA (Carry Generation)

Log2(N)

Now, given a the value of the carry-in of the least-significant bit, we
 can generate the carries for every adder.

cj = Gj-i + Pj-ici

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

cj

ci

ci
Gj-i

Pj-i

C7 C6 C5 C4 C3 C2 C1 C0

 C6 C4 C2 C0

 C4 C0

C0

G3-0
P3-0

G1-0
P1-0

G5-4
P5-4

G6
P6

G4
P4

G2
P2

G0
P0

C

C

C C

C

C C

Notice that the
 inputs on the
 right of each C
 blocks are the
 same as the
 inputs on the
 left of each
 corresponding
 GP block.

Ci

Pj-1

Gj-1 Ci

Cj

L11 – Arithmetic Circuits 14 Comp 411 – Fall 2015 9/29/2015

8-Bit CLA (Complete)
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA
A B

CO CI
G P S

FA

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL
Ci

GP/C
GHL PHL Ci

tPD = O(log(N))

GH PH

GHL PHL

GP
GL

PL

cj

ci

ci
GL

PL
C + =

GH PH Cj

GHL PHL Ci

GP/C
GL

PL
CI

CI

A B

S

CO

G P

Notice that we don’t need
 the carry-out output of
 the adder any more.

C0

L11 – Arithmetic Circuits 15 Comp 411 – Fall 2015 9/29/2015

Carry-Skip Adders

Idea: full P/G equations are complicated, but P by itself is simple. So
 just use P to “skip” carry across a block of ripple-carry adders:

A

B

(A)  Carries ripple simultaneously through each block; if block generates a
 carry, it appears on carry-out of block (similar to G). If carry-in is 0
 at start of operation, no spurious carry-outs will be generated.

(B)  If carry-in and PBLOCK are both true, carry skips to next block
(C)  Carry ripples though final block. tPD = 2*[K+ (N/K – 2) + K]

With variable size blocks tPD → O(sqrt(N))

C K-bit blocks
(K=4 in figure)

L11 – Arithmetic Circuits 16 Comp 411 – Fall 2015 9/29/2015

Carry-Select Adders

Idea: do two additions, one assuming carry-in is 0, the other assuming
 carry-in is 1. Use MUX to select correct answer when correct carry-in
 is known.

Blocks on the left can be bigger (more bits) –
 allowing more ripple time time while waiting for select

With one stage: 50% more gates, but twice as fast as ripple-carry
With multiple (variable-size) blocks: tPD → O(sqrt(N))

L11 – Arithmetic Circuits 17 Comp 411 – Fall 2015 9/29/2015

Adder Summary
Adding is not only a common, but it is also tends to be one of the most

 time-critical of operations. As a result, a wide range of adder
 architectures have been developed that allow a designer to tradeoff
 complexity (in terms of the number of gates) for performance.

Ripple
Carry

Carry
Skip

Carry
Select

Carry
Lookahead

Smaller / Slower Bigger / Faster

Add

A B

S

Add/Sub

A B

S

sub

A this point we’ll define a high-level
 functional unit for an adder, and
 specify the details of the
 implementation as necessary.

L11 – Arithmetic Circuits 18 Comp 411 – Fall 2015 9/29/2015

Shifting Logic
Shifting is a common operation that

 is applied to groups of bits. Shifting
 can be used for alignment, as well as
 for arithmetic operations.

 X << 1 is approx the same as 2*X
 X >> 1 can be the same as X/2

For example:
 X = 2010 = 000101002

Left Shift:
 (X << 1) = 001010002 = 4010

Right Shift:
 (X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
 (-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

L11 – Arithmetic Circuits 19 Comp 411 – Fall 2015 9/29/2015

More Shifting
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL3

Using the same
 basic idea we can
 build left shifters
 of arbitrary sizes
 using muxes.

Each shift amount
 requires its own
 set of muxes.

Hum, maybe
 we could do
 something
 more clever.

L11 – Arithmetic Circuits 20 Comp 411 – Fall 2015 9/29/2015

Barrel Shifting
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0
“0”

SHL2

If we connect our “shift-left
-two” shifter to the output
 of our “shift-left-one” we
 can shift by 0, 1, 2, or 3 bits.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

T7

T6

T5

T4

T3

T2

T1

T0 “0”

SHL4

And, if we add one more
 “shift-left-4” shifter we can
 do any shift up to 7 bits!

So, let’s put a box around it
 and call it a new functional
 block.

Left
Barrel
Shifter

A

Y

S

N-bits

N-bits

log2(N)
bits

L11 – Arithmetic Circuits 21 Comp 411 – Fall 2015 9/29/2015

A7-0

Barrel Shifting with a Twist
At this point it would be straightforward to construct a

 “Right barrel shifter” unit. However, a simple trick that
 enables a left shifter to do both.

A0 A7 A1 A6 A2 A5 A3 A4 A4 A3 A5 A2 A6 A1 A7 A0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Left Barrel Shifter SHFT

Y7-0

Y0 Y7 Y1 Y6 Y2 Y5 Y3 Y4 Y4 Y3 Y5 Y2 Y6 Y1 Y7 Y0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

L11 – Arithmetic Circuits 22 Comp 411 – Fall 2015 9/29/2015

Boolean Operations
We also need to perform logical operations on groups of bits.

Which ones?

ANDing is useful for “masking” off groups of bits.
 ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)
ANDing is also useful for “clearing” groups of bits.
 ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)
ORing is useful for “setting” groups of bits.
 ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
 ex. 10101110 ^ 00001111 = 10100001 (1’s complement last 4 bits)
NORing is useful.. Uhm, because John Hennessy says it is!
 ex. ~(10101110 | 00001111) = 01010000 (0’s complement, 1’s clear)

L11 – Arithmetic Circuits 23 Comp 411 – Fall 2015 9/29/2015

Boolean Unit (The obvious way)
It is simple to build up a Boolean unit using primitive gates

 and a mux to select the function.
Since there is no interconnection

between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for
each primitive function,
and approx 3 for the
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool
00 01 10 11

This logic
 block is
 repeated
 for each bit
 (i.e. 32
 times)

L11 – Arithmetic Circuits 24 Comp 411 – Fall 2015 9/29/2015

Cooler Bools
We can better leverage a mux’s capabilities in our Boolean

 unit design, by connecting the bits to the select lines.
Why is this better?

1)  While it might take a little
logic to decode the truth
table inputs, you only have
to do it once, independent
of the number of bits.

2)  It is trivial to extend this
module to support any 2-bit
logical function.
(How about NAND, John?
Actually A & /B might be more useful)

Qi

Ai , Bi

00 01 10 11

NOR
OR
XOR

AND
OR

OR
XOR

Boolean bool

A B

Q

I should pay
 more

 attention
 to those
 muxes

Which ever way
 makes the most
 sense to you. Let’s
 get a box around
 it!

L11 – Arithmetic Circuits 25 Comp 411 – Fall 2015 9/29/2015

An ALU, at Last
We give the “Math Center” of a computer a special name--

 the Arithmetic Logic Unit. For us, it just a big box!

That’s
 a lot of
 stuff

Flags
V,C

A B

R

 Bidirectional
Barrel
Shifter

Boolean Add/Sub Sub

Bool

Shft

Math

1 0

1 0 …

N
Flag

Z
Flag

