Arithmetic Circuits

Didn’t | learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to

be... T~ ‘

Finally; time to

build some
serious
functional
We'll need
blocks
\ a lot of
boxes
® e

Filimage
0 be

Hishl

%

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 1

Review: 2's Complement

A
\ 4

N bits

ON-A| ON-2 | eee | cce | cee | 53 | 22 | of 20

/ Range: — 2N to 2N1 -1 T
“sign bit” “binary” point

&-bit 2's complement example:
MO1IO1I0 =27 +26 + 24+ 224+ 21=-128 + 64 + 16 + 4 + 2 =— 42

If we use a two’s-complement representation for signed integers, the same
binary addition procedure will work for adding both signed and unsigned
numbers.

By moving the implicit “binary” point, we can represent fractions too:
MO1.ONMN0 =-2°4+22+20+224+2%°=-8 +4+1+0.25 + 0.125 = - 2.625

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 2

Binary Addition

Here’s an example of binary addition as one might do it by “hand™

.— Carries from

1101 previous column

AddingtwoN-pit s 1101

numbers produces B+4+ (0101
an (N+1)-bit result™——_7 10010 \!/A‘ \|:3
(@)

Let’s start by building a block that adds one column:

Then we can cascade them to add two numbers of any size...

A|5 Bl.'.’) ATZ B|2 PT‘I |5i1 PTO BlO

B B B B

A A A A
coFA c co FA ci coFA ci co FA ci
|/ (o) S S S

| | | =
54 53 52 S S0 -

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 3

Designing a Full Adder: From Last Time

1) Start with a truth table: CGABC S
0000 O
2)Write down eqgns for the 0010 1
“1” outputs 0100 1
0111 O
C,=CAB+CAB+CAB+CAB | oo o o
S5=CAB +CAB + CAB + CAB 1101t o
1111 1
3)Simplifing a bit
C,=C(A+B)+AB C,=C(A@B)+AB

S=CoAob S=Ceo(AaB)

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 4

For Those Who Prefer Logic Diagrams ...

C,=C(A®B) +AB S0
S= Ci ® (A ® B) “Carry” /I /
Logic / [Jj VII
! o
o A little tricky, but only / - Cl
5 gates/bit - ,' | "
_____ /
“Sum”
S Logic

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 5

Subtraction: A-B = A + (-B)

Using 2's complement representation: —-B = ~B + 1

~ = bit-wise complement
D 35D
0 1

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

B3 B2 1 BO

B
Lo =
A

Subtract

ey e

| |
B A B A
o

|
B

A
coFA ¢ coFA c coFA c coFA ci

= L

54 53 S0 51 SO

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 6

Condition Codes

Besides the sum, one often wants four other bits ﬁo compare A and B, \

of information from an arithmetic unit: perform A—B and use
Z (zero): result is = O big NOR gate condition codes:
N tive): Itis < O g Signed comparison:
(negative): result is < v LT NGV
C (carry): indicates that add in the most ;’E Z"' (NoV)
significant position produced a carry, e.g., Ng 7
“1+ (-1)” from last FA
GE ~ (NeV)
V (overflow): indicates that the answer has GT ~(z2+(NeV))
too many bits to be represented correctly by . _
the result width, e.g., “(2'- 1)+ (2~ 1)” Unsigned comparison:
LTU C
- NiA R LEU C+2
V_AN—IBN—1N+AN—1BN—1N ~C

GEU
-or- KGTU ~ (C+Z) /

v=Co, & CI,

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 7

Tpp of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when

adding 11...111 to 00...001. I
tep = (Pppxor +Ppp.anD + tPDBR) +(N-2)*(tpp or + tepanp) * Troxor = ©(N)
~ " ~ ~" ~ H_} Cl
A,.B, to CO, Clto CO Cly.s to Sy - ?
S

O(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits &

Faster Carry Logic

Let’s see if we can improve the speed by first “rewriting”
and then “reinterpreting” the equations for Cy ;:

Coyr = AB + ACy, + BC,y 4 N\

= AB + (A + B)C
=G +PCy where G=ABand P=A + B

7N

generate propagate

To generate the Carry of the N* bit:
Cny=0ng + Pr\1-1c‘r\1/-1
= Oyt + Py Oz + Pt Pr2Cnez

= Opn. + PuiOnz + Pra Pu2Ones + o0 + P Pl

N— _
—

Cy in only 3 levels of logic!
1 for P/G generation, 1 for ANDs, 1 for final OR

Comp 411 - Fall 2015 9/29/2015

Actually, P was can
be either A + B or

A @ B, because the

G = AB term of C ¢
handles the only case
where they differ.

|
Y

G PSS

Cl

L11 — Arithmetic Circuits 9

N-Bit Addition in Constant Time?

So if we had (N+1)-input gates and didn’t mind a lot of
loading on the P signals, the propagation delay of adder

built using P/G equation to compute C,, of each bit would
be:

4 gate delays = O(1) (independent of N)

Recall large fan-in gates (many inputs) are implemented
using trees (see last lecture). So for large N we expect more
like O(log,N) gate delays. This concept does lead to some
interesting adder designs:

¢ faster ripple-carry implementations
¢ hierarchical carry-lookahead adders

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 10

Carry-Lookahead Adders (CLA)

We can build a hierarchical carry-lookahead chain by generalizing our
definition of the Carry Generate/Propagate (GP) Logic. We start by
dividing our addend into two parts, a higher part, H, and a lower part,
L. The GP function can be expressed as follows:
Generate a carry out if the high part generates one,
G =Gy + PG, - orifthe low part generates one and the high part
propagates it. Propagate a carry if both the high

Pu=PuPL and low parts propagate theirs.
Gy Py || ||
A B A B
G, l l —coFA ci —coFA ci
G, Py P/G generation G P S 5 P 5
6P, |—
Gy Pu G, P
=1 nor GL(
Gu P 1°* level of P P I€
building block |
9/29/2015 L11 = Arithmetic Circuits 11

Comp 411 - Fall 2015

8-bit CLA (GP Generation)

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 Al Bl AO BO
| |]] | |]]
A B A B A B A B A B A B A B A B
—coFA cl —coFA cF —coFA cafF —coFA ca —coFA cf —cobR cal —coFA ca —coFA c}-
G P 5 G PS5 G P S G P S G P 5 G P 5 G P S G P S
| | | | | | | |
GH PH GL GH PH GL GH PH GL GH PH GL
6P (4] 4 6P (4] 4
GHLPHL P GHLPHL P GHLPHL P GHLPHL P
Gr.6 Pre Gs.4 Ps.4 Gs.» P32 Cio Pro
GH PH GL GH PH GL
Log,(N) GHLGf’l:L P GHLGr’l:L P
Gra Pr.4 Gs.0 Pso
GH PH GL
GHLPHL P
A 4
Gr.o Pro

We can build a tree of GP units to compute the generate and propagate
logic for any sized adder. For a 2N-bit adder, we need 2N-1 GP units.

— _/ H_}

G0 P70

Comp 411 - Fall 2015 9/29/2015

L11 — Arithmetic Circuits 12

8-bit CLA (Carry Generation)

Now, given a the value of the carry-in of the least-significant bit, we

¢ can generate the carries for every adder.
IJ

¢, =G+ P
G I—CI
P C7 Co C5 C4 Cd C2 C1 Cco
"1 G T j G T T G T j G T
6—l6._ +=6_ 9 G 9 o=l6. %
Porp € o7 P, J € o pl KrE o p) KrE o
lce lca lc2 fco
G C. C.
Log,(N) 5470y cj c.l—> Cr.o— Gy cj cl—>
P5'4 - Pj'i G | P1'0 — Pj-i C; Il Notice that the
/ inputs on the
TC4 CO rigpht of each C
GB-O—’ G.. cj \ / blocks are the
P a c G —> ' same as the
5-0 —» Pj'i C, A\? inputs on the
T left of each
rre ndin
CO GP blogk,

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 13

8-Bit CLA (Complete)

A, B A, B, A, By A, B, A, B, A, B, A, B, A, B,
[]] |]] |]

A B A B A B A B A B A B A B A B
—co FA ¢ —coFA o —co FA c —coFA a —coFA ¢ —coFA o —co FA c —co FA o
G P S G P S G P S G P S 3?5‘_ G P S G P S G P S

Al ki
G PuCy Gy PyC b P c'.- G PuC
6P/C ~ 6P/C r P/C 6P/C -
GHL PHL C|Cl GHL PHL ClcI (HL PHL C i GHL PHL ClcI
[]
Gy PHCJG 5, P, C
6P/C r er/c |
(o :
GHL PHL Ci (HL PHL C
[1
Gy PuC, .
ep/cF t. = O(Iog(N))
GHLPHLCiMi PD
¢,

Comp 411 - Fall 2015

I e
< [
+ @ ¢ =| 6P/C P,
< —1P, C C,
T GHL P LC|

Notice that we don’t need :
the carry-out output of
the adder any more. N
‘_ AN
€« & Cl
> {
Cco

9/29/2015

Y

G PS5

L1 — Arithmetic Circuits 14

Carry-Skip Adders

ldea: full P/G equations are complicated, but P by itself is simple. So
just use P to “skip” carry across a block of ripple-carry adders:

31909%15% ; 3,b,8,,3,b,8,5,
P i 10 1 [O O R O I P11 1 1t [S I T O b1t i il
¢ C" Ci2 cﬂ %
cO
Pl?. 15 P.. " P‘,? H—J
N~

~d N~

K-bit blocks
G (K=4 in figure)

(A) Carries ripple simultaneously through each block; if block generates a
carry, it appears on carry-out of block (similar to G). If carry-in is O
at start of operation, no spurious carry-outs will be generated.

(B) If carry-in and Py, are both true, carry skips to next block

(C) Carry ripples though final block. t,, = 2*[K+ (N/K - 2) + K]

With variable size blocks t,, = O(sqrt(N))

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 15

Carry-Select Adders

ldea: do two additions, one assuming carry-in is O, the other assuming
carry-in is 1. Use MUX to select correct answer when correct carry-in
is known.

| c
c 4 --co
8

$.5,9.5.5. .S

BTI? V167157 14713 s . S§$.5 _6S S

12%115%10 % %5
S, Sg S5 S

Blocks on the left can be bigger (more bits) —
allowing more ripple time time while waiting for select

With one stage: 50% more gates, but twice as fast as ripple-carry
With multiple (variable-size) blocks: t,, = O(sqrt(N))

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 16

Adder Summary

Adding is not only a common, but it is also tends to be one of the most
time-critical of operations. As a result, a wide range of adder
architectures have been developed that allow a designer to tradeoff
complexity (in terms of the number of gates) for performance.

Smaller / Slower Bigger / Faster
Ripple Carry Carry Carry
Carry Skip Select Lookahead
A B A B
A this point we'll define a high-level Jf Jf Jf Jf

functional unit for an adder, and Add st \ A Jd/Sub
specify the details of the
implementation as necessary.

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 17

Shifting Logic

7 N
] 0 I _R
Shl'f'bll’lg is a common operation that I 7
is applied to groups of bits. Shifting X o\\ R
can be used for alignment, as well as 1 6
for arithmetic operations. X5 o\\ R
1 5
X << 1 is approx the same as 2*X X4 i\
X >>1 can be the same as X/2 (1)/ Rs
Xs | =\
For example: Rs
X = 20,, = 00010100, % Lo\ .
Left Shift: « [i
(X << 1) = 00101000, = 40,, ‘ 011 R,
Right Shift: <
Xo |\
(X >>1) = 00001010, = 10,, - ‘13 Ro
Signed or “Arithmetic” Right Shift: /\
(-X >> 1) = (11101100, >> 1) = 11110110, = -10,, SHL1

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 18

More Shifting

—57 Using the same o

basic idea we can X
build left shifters

of arbitrary sizes X
using muxes.

|
S/

!

l
S/

x

X 0//* 0//* 0//* 0//* °//
X

A 0//* 0//* 0//* 0//* °//

XS/
!

S I N)
<)

Each shift amount
requires its own X5
set of muxes.

Hum, maybe

we could do

something)(1
more clever.

AN
5o L %o

i
p

Y/
N
Y/
o

P

/e
070

SHL1 SHL2 SHL3

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 19

Barrel Shifting

SHL1

/* 0//* 0//* 0//* 0//* 0//* 0//* 0//* S/

Comp 411 - Fall 2015

S
: ?\\ = ;i\ T
- ?i\ % ;i\ T6
R, ?i\ 5, ;i\ :
- ?i\ = ;i\ T4
: ?i\ = ;i\ T5
: ?i\ 2 ;i\ T2
|
fg» E\ 530,, i\ T
SHLZ—\ SHL4 A\

9/29/2015

If we connect our “shift-left
-two” shifter to the output
of our “shift-left-one” we
can shift by O, 1, 2, or 3 bits.

And, if we add one more

“shift-left-4” shifter we can
do any shift up to 7 bits!

So, let’s put a box around it
and call it a new functional
block.

N bits

]0@2(N) Left
blts
Barrel
Shlﬁzer

N bits

L11 — Arithmetic Circuits 20

Barrel Shifting with a Twist

At this point it would be straightforward to construct a
“Right barrel shifter” unit. However, a simple trick that
enables a left shifter to do both.

AA71AAA A A1

o SIT T XI5

5HFT77/ Left Barrel Shifter /

Yolr YiYe YoYs YaXe YaYs Yoo YoXi YrYo

ket AT 1/)_1)_1)_1)_)\Lyu)

Z, Z, Zy Z, Z, Z, Z, = Z,

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits

21

Boolean Operations

We also need to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = OO001M10 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 000010 (O’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 1010111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex. 10101110 * 00001111 = 10100001 (1's complement last 4 bits)

NORing is useful.. Uhm, because John Hennessy says it is!
ex. ~(10101110 | OO0O01111) = 01010000 (O’s complement, 1's clear)

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 22

Boolean Unit (The obvious way)

It is simple to build up a Boolean unit using primitive gates
and a mux to select the function.

Since there is no interconnection A B.
between bits, this unit can This logic

be simply replicated at each '::;‘;';Zd
position. The cost is about LHEQU[Q ‘Elf’;e;‘;h biv
7 gates per bit. One for tnmes)
each primitive function,

and approx 3 for the Bool ‘A /\\'
4-input mux. &

This is a straightforward, but not too elegant of a deengn.

Comp 411 - Fall 2015 9/29/2015 L1 — Arithmetic Circuits 23

Cooler Bools

We can better leverage a mux’s capabilities in our Boolean

uhit desigh, by connecting the bits to the select lines.
| should pay

Why is this better? OR OR AND /' avvntion

NTR XOR X R OR to those
| muxes
1) While it might take a little o0 o 10 " <

logic to decode the truth A, B,
table inputs, you only have
to do it once, independent |

of the humber of bits. Q,
A B
2) Itis trivial to extend this * *
module to support any 2-bit bool
—>
logical function. Which Boolean
Icn ever wa
(How about NAND, John? makes the mgst
Actually A & /B might be more useful) sense toyou.Let's
get a box around
it!
9/29/2015 L11 — Arithmetic Circuits 24

Comp 411 - Fall 2015

An ALU, at Last

We give the “Math Center” of a computer a special name--
the Arithmetic Logic Unit. For us, it just a big box!

A
\ 4 \ 4 A /v/ /v/

Sub Bidirectional

\<\dd/5U|/ 4>/ Barrel 7* Boolean

Shifter
Bool ; 4 P e /"/
/ v

Shft \ —

Flags N R Z
V,C Flag Flag

Comp 411 - Fall 2015 9/29/2015 L11 — Arithmetic Circuits 25

