
L11 – Arithmetic Circuits   1 Comp 411 – Fall 2015 9/29/2015 

Arithmetic Circuits 
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Didn’t I learn how 
to do addition in 
the second grade? 
UNC courses aren’t 
what they used to 
be... 

Finally; time to
 build some

 serious
 functional

 blocks 
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We’ll need
 a lot of
 boxes 
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Review: 2’s Complement 

20 21 22 23 … 2N-2 -2N-1 … … 
N bits 

8-bit 2’s complement example: 
    11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42 

If we use a two’s-complement representation for signed integers, the same
 binary addition procedure will work for adding both signed and unsigned
 numbers. 

By moving the implicit “binary” point, we can represent fractions too: 
     1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625 

“sign bit” “binary” point 
Range: – 2N-1  to  2N-1 – 1 
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Binary Addition 

Here’s an example of binary addition as one might do it by “hand”: 

A:  1101 
B:+ 0101 

10010 

1 0 1 1 
Carries from 

previous column 
Adding two N-bit
 numbers produces
 an (N+1)-bit result 

Then we can cascade them to add two numbers of any size… 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 

A3  B3          A2  B2         A1   B1          A0 B0 

S4       S3                 S2                S1                S0 

Let’s start by building a block that adds one column: 

   A       B 
CO          CI 
        S 

FA 
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Designing a Full Adder: From Last Time 

1)  Start with a truth table: 

2) Write down eqns for the 
“1” outputs 

Co = CiAB + CiAB + CiAB + CiAB 
S = CiAB + CiAB + CiAB + CiAB 

3) Simplifing a bit 

Co = Ci(A + B) + AB 
S = Ci ⊕ A ⊕ B 

Co = Ci(A ⊕ B) + AB 
S = Ci ⊕ (A ⊕ B) 
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For Those Who Prefer Logic Diagrams … 

•  A little tricky, but only  
5 gates/bit 

CI 

A B 

S 

CO 

Co = Ci(A ⊕ B) + AB 
S = Ci ⊕ (A ⊕ B) 

“Sum” 
Logic 

“Carry” 
Logic 
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Subtraction: A-B = A + (-B) 

Using 2’s complement representation: –B = ~B + 1 

But what about
 the “+1”? 

So let’s build an arithmetic unit that does both addition and subtraction. 
 Operation selected by control input: 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 

A3                 A2                A1                A0 

S4       S3                 S0                S1                S0 

 B3                 B2                B1                B0 
Subtract 

~ = bit-wise complement 

B 
0 

B B 
1 

B 
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Condition Codes 

Besides the sum, one often wants four other bits
 of information from an arithmetic unit: 

V (overflow): indicates that the answer has
 too many bits to be represented correctly by
 the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)” 

Z (zero): result is = 0                  big NOR gate 

N (negative): result is < 0          SN-1 

C (carry):  indicates that add in the most
 significant position produced a carry, e.g., 
“1 + (-1)”                                       from last FA 

€ 

V = AN −1BN −1N +A N −1B N −1N

€ 

V =CON −1⊕ CIN −1
-or- 

! 
! 
! 

Z 
S7 
S6 
S5 
S4 
S3 
S2 
S1 
S0 

S31 
S30 
S29 
S28 
S27 
S26 
S25 
S24 

Is that a 
NOR gate? 

To compare A and B, 
 perform A–B and use 
condition codes: 

Signed comparison: 
 LT  N⊕V 
 LE  Z+(N⊕V) 
 EQ  Z 
 NE  ~Z 
 GE  ~(N⊕V) 
 GT  ~(Z+(N⊕V)) 

Unsigned comparison: 
 LTU  C 
 LEU  C+Z 
 GEU  ~C 
 GTU  ~(C+Z) 
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TPD of Ripple-Carry Adder 

Worse-case path: carry propagation from LSB to MSB, e.g., when
 adding 11…111 to 00…001. 

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR   ≈ Θ(N) 

CI to CO CIN-1 to SN-1 

Θ(N) is read “order N” and tells us that the latency of our adder 
          grows in proportion to the number of bits in the operands. 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 

 An-1 Bn-1         An-2 Bn-2                A2   B2          A1   B1          A0   B0 

 Sn-1                Sn-2                       S2                S1                 S0 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA C 
… 

CI 

A B 

S 

CO 
A0,B0 to CO0 
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Faster Carry Logic 
Let’s see if we can improve the speed by first “rewriting”  
and then “reinterpreting” the equations for COUT: 

COUT = AB + ACIN + BCIN 

        = AB + (A + B)CIN 

        = G + P CIN where G = AB and P = A + B 

generate propagate 

To generate the Carry of the Nth bit: 

CN = GN-1 + PN-1CN-1 

     = GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2 

     = GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN 

Actually, P was can  
be either A + B or  
A ⊕ B, because the  
G = AB term of COUT  
handles the only case 
where they differ. 

CN in only 3 levels of logic! 
  1 for P/G generation, 1 for ANDs, 1 for final OR 

CI 

A B 

S 

CO 

G      P 



L11 – Arithmetic Circuits   10 Comp 411 – Fall 2015 9/29/2015 

N-Bit Addition in Constant Time? 

So if we had (N+1)-input gates and didn’t mind a lot of
 loading on the P signals, the propagation delay of adder
 built using P/G equation to compute CIN of each bit would
 be: 

 4 gate delays ≈ O(1) (independent of N) 

Recall large fan-in gates (many inputs) are implemented
 using trees (see last lecture). So for large N we expect more
 like O(log2N) gate delays. This concept does lead to some
 interesting adder designs: 

" faster ripple-carry implementations 
" hierarchical carry-lookahead adders 
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Carry-Lookahead Adders (CLA) 
We can build a hierarchical carry-lookahead chain by generalizing our
 definition of the Carry Generate/Propagate (GP) Logic. We start by
 dividing our addend into two parts, a higher part, H, and a lower part,
 L. The GP function can be expressed as follows: 

GHL = GH + PH GL 

PHL = PH PL  

Generate a carry out if the high part generates one,
 or if the low part generates one and the high part
 propagates it. Propagate a carry if both the high
 and low parts propagate theirs. 

Hierarchical 
 building block 

GH  PH 

GHL   PHL 

GP 
GL 

PL 

P/G generation 

1st level of 
lookahead 

   A       B 
CO         C I 
 G    P    S 

FA 
   A       B 
CO         C I 
 G    P    S 

FA 

GH  PH 

GHL   PHL 

GP 
GL 

PL 

PL 

PH 

GH  PHL 

GL 

GH 
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8-bit CLA (GP Generation) 

Log2(N) 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 

A7   B7            A6  B6          A5  B5            A4   B4          A3   B3            A2   B2         A1    B1            A0   B0 

We can build a tree of GP units to compute the generate and propagate
 logic for any sized adder. For a 2N-bit adder, we need 2N-1 GP units. 

  C  = G7 + P7 G6 + P7 P6G5 + P7 P6P5G4 + … + P7 ...P0CIN 

P7-0 

G7-0  P7-0 

G7-0 

G3-0      P3-0 

G1-0       P1-0 G3-2       P3-2 

G7-4       P7-4 

G5-4       P5-4 G7-6       P7-6 
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8-bit CLA (Carry Generation) 

Log2(N) 

Now, given a the value of the carry-in of the least-significant bit, we
 can generate the carries for every adder. 

cj = Gj-i + Pj-ici 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

cj 

ci 

ci 
Gj-i 

Pj-i 

C7     C6               C5     C4             C3     C2               C1      C0 

     C6                        C4                      C2                        C0 

     C4                                                   C0 

C0 

G3-0 
P3-0 

G1-0 
P1-0 

G5-4 
P5-4 

G6 
P6 

G4 
P4 

G2 
P2 

G0 
P0 

C 

C 

C C 

C 

C C 

Notice that the
 inputs on the
 right of each C
 blocks are the
 same as the
 inputs on the
 left of each
 corresponding
 GP block. 

Ci 

Pj-1 

Gj-1 Ci 

Cj 
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8-Bit CLA (Complete) 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 
A         B 

CO           CI 
G    P   S 

FA 

A7   B7              A6   B6           A5   B5            A4    B4           A3    B3            A2   B2           A1    B1             A0   B0 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 
Ci 

GP/C 
GHL PHL Ci 

tPD = O(log(N)) 

GH  PH 

GHL   PHL 

GP 
GL 

PL 

cj 

ci 

ci 
GL 

PL 
C + = 

GH   PH    Cj 

GHL  PHL Ci 

GP/C 
GL 

PL 
CI 

CI 

A B 

S 

CO 

G      P 

Notice that we don’t need
 the carry-out output of
 the adder any more. 

C0 
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Carry-Skip Adders 

Idea: full P/G equations are complicated, but P by itself is simple.  So
 just use P to “skip” carry across a block of ripple-carry adders: 

A 

B 

(A)  Carries ripple simultaneously through each block; if block generates a
 carry, it appears on carry-out of block (similar to G).  If carry-in is 0
 at start of operation, no spurious carry-outs will be generated. 

(B)  If carry-in and PBLOCK are both true, carry skips to next block 
(C)  Carry ripples though final block.  tPD = 2*[K+ (N/K – 2) + K] 

With variable size blocks tPD → O(sqrt(N)) 

C K-bit blocks 
(K=4 in figure) 
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Carry-Select Adders 

Idea: do two additions, one assuming carry-in is 0, the other assuming
 carry-in is 1.  Use MUX to select correct answer when correct carry-in
 is known. 

Blocks on the left can be bigger (more bits)  –  
 allowing more ripple time time while waiting for select 

With one stage: 50% more gates, but twice as fast as ripple-carry 
With multiple (variable-size) blocks: tPD → O(sqrt(N)) 
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Adder Summary 
Adding is not only a common, but it is also tends to be one of the most

 time-critical of operations. As a result, a wide range of adder
 architectures have been developed that allow a designer to tradeoff
 complexity (in terms of the number of gates) for performance. 

Ripple 
Carry 

Carry 
Skip 

Carry 
Select 

Carry 
Lookahead 

Smaller / Slower Bigger / Faster 

Add 

A B 

S 

Add/Sub 

A B 

S 

sub 

A this point we’ll define a high-level
 functional unit for an adder, and
 specify the details of the
 implementation as necessary. 
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Shifting Logic 
Shifting is a common operation that

 is applied to groups of bits. Shifting
 can be used for alignment, as well as
 for arithmetic operations. 

 X << 1   is approx the same as  2*X 
 X >> 1   can be the same as  X/2 

For example:   
  X = 2010 = 000101002 

Left Shift: 
    (X << 1) = 001010002 = 4010 

Right Shift: 
    (X >> 1) = 000010102 = 1010 

Signed or “Arithmetic” Right Shift: 
    (-X >> 1) = (111011002 >> 1) = 111101102 = -1010 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

R7 

R6 

R5 

R4 

R3 

R2 

R1 

R0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL1 
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More Shifting 
0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

R7 

R6 

R5 

R4 

R3 

R2 

R1 

R0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

S7 

S6 

S5 

S4 

S3 

S2 

S1 

S0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL2 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

S7 

S6 

S5 

S4 

S3 

S2 

S1 

S0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL3 

Using the same
 basic idea we can
 build left shifters
 of arbitrary sizes
 using muxes. 

Each shift amount
 requires its own
 set of muxes. 

Hum, maybe
 we could do
 something
 more clever. 
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Barrel Shifting 
0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

R7 

R6 

R5 

R4 

R3 

R2 

R1 

R0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

S7 

S6 

S5 

S4 

S3 

S2 

S1 

S0 
“0” 

SHL2 

If we connect our “shift-left
-two” shifter to the output
 of our “shift-left-one” we
 can shift by 0, 1, 2, or 3 bits. 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

T7 

T6 

T5 

T4 

T3 

T2 

T1 

T0 “0” 

SHL4 

And, if we add one more
 “shift-left-4” shifter we can
 do any shift up to 7 bits! 

So, let’s put a box around it
 and call it a new functional
 block. 

Left 
Barrel 
Shifter 

A 

Y 

S 

N-bits 

N-bits 

log2(N) 
bits 
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A7-0 

Barrel Shifting with a Twist 
At this point it would be straightforward to construct a

 “Right barrel shifter” unit. However, a simple trick that
 enables a left shifter to do both. 

A0 A7   A1   A6  A2 A5   A3 A4   A4 A3   A5 A2   A6 A1    A7 A0 

RGT 
1    0 1    0 1    0 1    0 1    0 1    0 1    0 1    0 

Left Barrel Shifter SHFT 

Y7-0 

Y0 Y7    Y1   Y6   Y2 Y5    Y3 Y4   Y4 Y3    Y5 Y2   Y6 Y1    Y7 Y0 

RGT 
1    0 1    0 1    0 1    0 1    0 1    0 1    0 1    0 

  Z7          Z6        Z5        Z4         Z3        Z2         Z1         Z0 
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Boolean Operations 
We also need to perform logical operations on groups of bits.  

Which ones? 

ANDing is useful for “masking” off groups of bits. 
    ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits) 
ANDing is also useful for “clearing” groups of bits. 
    ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits) 
ORing is useful for “setting” groups of bits. 
    ex.  10101110 | 00001111 = 10101111  (1’s set last 4 bits) 

XORing is useful for “complementing” groups of bits. 
    ex.  10101110 ^ 00001111 = 10100001  (1’s complement last 4 bits) 
NORing is useful.. Uhm, because John Hennessy says it is! 
    ex.  ~(10101110 | 00001111) = 01010000  (0’s complement, 1’s clear) 
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Boolean Unit (The obvious way) 
It is simple to build up a Boolean unit using primitive gates

 and a mux to select the function. 
Since there is no interconnection 

between bits, this unit can 
be simply replicated at each 
position. The cost is about 
7 gates per bit. One for  
each primitive function, 
and approx 3 for the  
4-input mux. 

This is a straightforward, but not too elegant of a design. 

Ai Bi 

Qi 

Bool 
00      01       10       11 

This logic
 block is
 repeated
 for each bit
 (i.e. 32
 times) 
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Cooler Bools 
We can better leverage a mux’s capabilities in our Boolean

 unit design, by connecting the bits to the select lines. 
Why is this better? 

1)  While it might take a little 
logic to decode the truth 
table inputs, you only have 
to do it once, independent 
of the number of bits. 

2)  It is trivial to extend this 
module to support any 2-bit 
logical function.  
(How about NAND, John?  
Actually A & /B might be more useful) 

Qi 

Ai , Bi 

00      01       10       11 

NOR 
OR 
XOR 

AND 
OR 

OR 
XOR 

Boolean bool 

A B 

Q 

I should pay
 more

 attention
 to those
 muxes 

Which ever way
 makes the most
 sense to you. Let’s
 get a box around
 it! 
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An ALU, at Last 
We give the “Math Center” of a computer a special name-- 

 the Arithmetic Logic Unit. For us, it just a big box! 

That’s
 a lot of
 stuff 

Flags 
V,C 

A B 

R 

     Bidirectional 
Barrel 
Shifter 

Boolean Add/Sub Sub 

Bool 

Shft 

Math 

1     0 

1     0 …
 

N 
Flag 

Z 
Flag 


