Transistors and Logic

Where Are We?

Things we know so far -

1) Computers process information
2) Information is measured in bits

3) Data can be represented as groups of bits
4) Computer instructions are encoded as bits
5) Computer instructions are just data
6) But, we don't want to deal with bits... So we invent ASSEMBLY Language
7) Even that is too low-level... So we invent COMPILERs to generate assembly code and assemblers to generate the final bits ...

But, how are all these bits PROCESSED?

A Substrate for Computation

We can build devices for processing and representing bits using almost any physical phenomenon

Wait! Those last ones might have potential...
 trained elephants -engraved stone tablets -orbits of planets -sequences of amino acids polarization of a photon

Using Electromagnetic Phenomena

Some EM things we could encode bits with:
voltages currents
phase
frequency

With today's technologies voltages are most often used.
Voltage pros:
easy generation, detection voltage changes can be very fast lots of engineering knowledge
Voltage cons:
easily affected by environment
DC connectivity required?
R\&C effects slow things down

Representing Information with Voltage

Representation of each point (x, y) on a B\&W Picture:

O volts:	BLACK
1 volt:	WHITE
0.37 volts:	37% Gray
etc.	

Representation of a picture:
Scan points in some prescribed raster order... generate voltage
 waveform

How much information at each point?

Information Processing = Computation

First, let's introduce some processing blocks:

Let's build a system!

(Reality)

output

Why Did Our System Fail?

Why doesn't reality match theory?

1. COPY Operator doesn't work right
2. INVERSION Operator doesn't work right
3. Theory is imperfect
4. Reality is imperfect
5. Our system architecture stinks

ANSWER: all of the above!

Noise and inaccuracy are inevitable; we can't reliably reproduce infinite information-- we must design our system to tolerate some amount of error if it is to process information reliably.

The Key to System Design

A SYSTEM is a structure that is "guaranteed" to exhibit a specified behavior, assuming all of its components obey their specified behaviors.

How is this achieved? Through Contracts
Every system component will have clear obligations and responsibilities. If these are maintained we have every right to expect the system to behave as planned. If contracts are violated all bets are off.

The Digital Panacea

Why DIGITAL?

... because it keeps the contracts SIMPLE!

It's the price we pay for this robustness

All the information that we transfer between components is only 1 crummy bit!

But, in exchange, we get reliable, modular, and reproducible systems.

The Digital Abstraction

Keep in mind, the world is not digital, we engineer it to behave that way. We must use real physical phenomena to implement digital designs!

A Digital Processing Element

Static $\left\{\begin{array}{l}\text { Discipline } \\ \begin{array}{l}\text { - combinational device is a circuit element that has } \\ \text { - one or more digital inputs } \\ \text { - one or more digital outputs } \\ \text { a functional specification that details the value of each } \\ \text { output for every possible combination of valid input } \\ \text { values } \\ \text { - a timing specification consisting (at minimum) of an } \\ \text { upper bound propagation delay, } t_{p d} \text { on the required } \\ \text { time for the device to compute the specified valid } \\ \text { output values from an arbitrary set of stable, valid }\end{array} \\ \text { input values }\end{array}\right.$

A Combinational Digital System

- A system of interconnected elements is
 combinational if
- each circuit element is combinational
- every input is connected to exactly one output or directly to some source of O's or 1's
- the circuit contains no directed cycles

No feedback (yet!)

- But, in order to realize digital processing elements we have one more requirement!

A definition for a VALID input and a VALID output!'

Valid = Noise Margins

- Key idea:

Don't allow " 0 " to be mistaken for a " 1 " or vice versa

- Use the same "uniform bit-representation convention", for every component in our digital system
- To implement devices with high reliability, we outlaw "close calls" via a representation convention which forbids a range of voltages between " 0 " and " 1 ".
- Ensure the valid input range is more tolerant (larger) than the valid output range
Our definition of valid does not preclude inputs and outputs from
passing through invalid values. In fact, they must, but only during transitions. Our specifications allow for this (i.e. outputs are specified sometime ($T_{p d}$) after after inputs become valid).

Digital Processing Elements

Some digital processing elements occur so frequently that we give them special names and symbols

Q: What is the point of a buffer?
Doesn't a wire do the same thing? A: A buffer restores marginal digital signals, because the output is as good or "better" than the input (i.e. it solves that bad image problem from slide 7).

Digital Processing Elements

Some digital processing elements occur so frequently that we give them special names and symbols

In honor of the richest man in the world we will henceforth refer to digital processing elements as "GATES"

From What Do We Make Digital Devices?

- A controllable switch is the common link of all computing technologies
- How do you control voltages with a switch?
- By creating and opening paths between higher and lower potentials

N-Channel Field-Effect Transistors (NFETs)

Operating regions:

When the gate voltage is high, the switch closes. Good at pulling things "low".

P-Channel Field-Effect Transistors (PFETs)

Operating regions:

Finally... Using Transistors to Build Logic Gates!

CMOS Inverter

"Digital" Transistor Abstraction

- Transistors are extremely flexible, but fickled analog devices.
- If we limit how we use them, (i.e. adopt conventions), they can act as robust digital devices.
- Which we can treat as a simple switch abstraction.

N-channel FET,
a 3-input device

Complementary Pullups and Pulldowns

This is what the "C" in CMOS stands for!
We design components with complementary pullup and pulldown logic (i.e., the pulldown should be "on" when the pullup is "off" and vice versa).

pullup	pulldown	$F\left(A_{1}, \ldots, A n\right)$
on	off	driven " ""
off	on	driven " 0 "
on	on	driven " x "
off	off	no connection

Since there's plenty of capacitance on output nodes, so when the output becomes disconnected it tends to "remember" its previous voltage- at least for a while. The "memory" is the load capacitor's charge. Leakage currents will cause eventual decay of the charge (that's why DRAMs need to be refreshed!).

What a nice

Thanks. It runs in the family...

conducts when A is high and B is high: $A \cdot B$

conducts when A is high

conducts when A is high or B is high: $A+B$

CMOS Complements

 onducts when A is low or B is low: $\bar{A}+\bar{B}=\overline{A \cdot B}$
 Series P connections:
conducts when A is low and B is low: $\bar{A} \cdot \bar{B}=\overline{A+B}$

A Two Input Logic Gate

What function does
this gate compute?

Here's Another...

What function does
this gate compute?

General CMOS Gate Recipe

Step 1. Figure out pulldown network that does what you want (i.e the set of conditions where the output is ' 0 ')

$$
\text { e.g., } F=\overline{A^{*}(B+C)}
$$

Step 2. Walk the hierarchy replacing nfets with pfets, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pfet pullup network from Step 2 with nfet pulldown network from Step 1 to form fully -complementary CMOS gate.

But isn't it hard to wire

it all up?

One Last Exercise

Lets construct a gate to compute:

$$
F=\overline{A+B C}=\operatorname{NOT}(O R(A, A N D(B, C)))
$$

Step 1: The pull-down network Step 2: The complementary pull-up network

One Last Exercise

Lets construct a gate to compute:

$$
F=\overline{A+B C}=\operatorname{NOT}(O R(A, A N D(B, C)))
$$

A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Step 1: The pull-down network Step 2: The complementary pull-up B network
Step 3: Combine and Verify

OBSERVATION: CMOS gates tend

to be inverting! Precisely, one or more " O " inputs are necessary to
 generate a "1" output, and one or more " 1 " inputs are necessary to generate a " O " output. Why?

Now We're Ready to Design Stuff!

We need to start somewhere -
usually with a functional specification

If you are like most pragmatists you'd rather be given a table or formula than solve a puzzle to understand a function. The fact is, any combinational function can be expressed as a table.
"Truth tables" are a concise description of the combinational system's function, where an output is specified for *every* input combination.

Conversely, any computation performed by a
combinational system can expressed as a truth table.

Where Do We Start?

We want to build a computer!

What do we do?
Thus far, we
have a few gates?
(AND, OR, which we haven't made yet.
An Inverter, and those funky CMOS things that we have made.)
... a systematic approach for designing logic

A Slight Diversion

Are we sure we have all the gates we need?
How many two-input gates are there?

Hum... all of these have 2-inputs (no surprise)
... 2 inputs have 4 permutations, giving 2^{2} output cases
How many permutations of 4 outputs are there? 2^{4} Generalizing, there are $2^{2^{N}}, \mathrm{~N}$-input gates!

Show me the Gates!

There are only 16 possible 2 -input gates
... some we know already, others are just silly

How many of these gates can be implemented using a single CMOS gate?

Do we need all of these gates?
Nope. We can describe them all using only AND, OR, and NOT.

But, we can compose gates using others

$B>A$	
$A B$	y
00	0
01	1
10	0
11	0

$X O R$	
$A B$	y
00	0
01	1
10	1
11	0

One Will Do!

NANDs and NORs are UNIVERSAL

A UNIVERSAL gate is one that can be used to implement *ANY* COMBINATIONAL FUNCTION. There are many UNIVERSAL gates, but not all gates are UNIVERSAL. A: Any function that can be written as a truth table.

Ah!, but what if we want more than 2 -inputs

Stupid Gate Tricks

Suppose we have some 2 -input XOR gates:

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

And we want an N -input XOR:

output $=1$ iff number of 1 s input is ODD ("PARITY")

$$
t_{\mathrm{pd}}=N \mathrm{nS} \text {-- WORST CASE. }
$$

Can we compute N -input XOR faster?

I Think That I Shall Never See a Gate Lovely as a ...

N-input TREE has $O(\underline{\log N})$ levels...
Signal propagation takes $O(\underline{\log N})$ gate delays.
EVERY N -Input Combinational function be implemented using only 2 -input gates? But, its handy to have gates with more than 2-inputs if needed.

Our first Design Approach

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

-it's systematic!
-it works!
-it's easy!
-we get to go home!

1) Write out our functional spec as a truth table
2) Write down a Boolean expression for every ' 1 ' in the output

$$
Y=\overline{C B} A+\bar{C} B A+C B \bar{A}+C B A
$$

3) Wire up the ideal gates, replace them with equivalent realizable gates, call it a day, and go home!

This approach will always give us logic expressions in a particular form:

SUM-OF-PRODUCTS

Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS with just three levels of logic.

INVERTERS/ANDIOR

More Useful Gate Structures

AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT) equivalent is usually easier to think about.

AOI and OA structures can be realized as a single CMOS gate. However, their function is equivalent to 3 levels of logic.

An Interesting 3-Input Gate

Based on C, select the A or B input to be copied to the output Y.

2-input Multiplexer

schematic

MUX Compositions and Shortcuts

A 4-bit wide
2-input Mux

Mux Function Synthesis

Consider implementation of some arbitrary Combinational function, $F(A, B, C)$

Mux Logic: An example of "structured" logic synthesis
... using a MULTIPLEXER

Small Improvements

We can apply certain optimizations to MUX Function synthesis

Next Time

Binary Arithmetic Circuits that: ADD
SUBTRACT
SHIFT

