Compilers and Interpreters

e Pointers, the
addresses we see

* Programs that write
other programs

A compiler is a program * Mana@ing the

that, when fed itself as :
input, produces ITSELF! deta'ls

é/ Then how was the first
com piler written?
|
A

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 1

An Aside: Let's C

C is the ancestor to most languages commonly used today.
{Algol, Fortran, Pascal} 2 C 2 C++ > Java

C was developed to write the
operating system UNIX.

C is still widely used for
“systems” programming

C's developers were frustrated that

the high-level languages available
at the time, lacked all the capabilities of assembly code.

But, the advantage of high-level languages is that they are
portable (i.e. not ISA specific).

C, thus, was an attempt to create a portable blend of a
“high-level language” and “assembler”

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 2

C begat Java

C++ was envisioned to add Object-Oriented (OO) concepts
from Simula and CLU on top of C

Java was envisioned to be more purely OO,
and to hide the details of memory
management as well as
Class/Method/Member implementation

For our purposes C is almost identical to JAVA except:
- C has “functions”, whereas JAYA has “methods”.

- C has explicit variables that contain the addresses of
other variables or data structures in memory.

- JAYA hides them under the covers.

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 3

Your first C pointer!

Let’s start with a feature that Java does not have called “pointers”

int i; // simple integer variable
int a[l0]; // array of integers (a is a pointer)
int *p; // pointer to integer (s)

* (expression) is content of address computed by expression .

Array variable names were our first hint

-— that “pointers” existed. The name of an
a [k] = ¥ (a+k) array \f/as somehow telling us where a
collections of indexable variables could be
found. We now know that all variables are
shorthands for addresses in memory.
And, array variables are just the address
of the O*" element. \

)

a is a constant of type “int *”

alk] = a[k+1l] = *(atk) = *(a+tk+l)

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 4

Other Pointer Related Syntax

int 1i;
int a[l0];
int *p;

if(*p) (*p)++;

if (*p) *p++;

The ampersand operator, “&”, means “give me the address of this variable reference”. Whereas
, means “give me the contents of the memory location implied by the

_&S expression”. These are YERY different things. Not to mention, “&” and

the star operator,

confusing because of their other uses as “anding” and “multiplying” operators.

Comp 411 - Fall 2015

// simple integer variable
array of integers
pointer to integer (s)

//
//

//
//
//
//
//
//
//

//
//

55555

& means address of
no need for & on a
address of 6t element of a

change value of that location
change value of next location

exactly the same as above

step pointer to the next element

contents of location pointed by p
changes location pointed to by p

9/6/15

can sometimes be

L5 — Addressing Modes 5

Legal uses of Pointers

int i; // simple integer variable
int a[l0]; // array of integers
int *p; // pointer to integer (s)

So what happens when
p = &i;

What is value of p[0]°?
What is wvalue of p[l]~?

p[O] is always an alias for the
variable i in this context. p[1]
could reference a[0], but don’t

count on it. \

)

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 6

C Pointers vs. object size

int i; // simple integer variable
int a[l0]; // array of integers

int *p; // pointer to integer (s)

i1 = *p++;

Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 4°

The “char” type is slightly different than the type of the same name
* v - in Java. C chars are &-bit signed bytes. Java chars are 16-bits and
char q 4 \ / hold only Unicode variables (they have no sign). Java has a type
? called “byte” that is most similar to a C “char”.

gt++; // really does add 1

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 7

Clear123, All are valid C!

void clearl (int array[], int size) {“ﬁgﬁxiﬁmmmf
for (int 1i=0; i<size; 1i++)
array[i] = 0;

}

Written using C “Pointer”

AN
void clear2(int array[], int size) {/?iwmmw
for (int *p = &array[0];, p < &array[size]; p++)
%* -— o
p=0;

efficient C “Pointer”
semantics.

void clear3(int *array, int size) {'%gwm“wwmm
int *end = array + size;
while (array < end)
*array++ = 0;

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes &

Pointer summary

* In the “C” world and in the “machine” world:
— a pointer is just the address of an object in memory

— size of pointer is fixed, and architecture dependent,
regardless of size of object that it points to

— to get to the next object of the same type, we increment
by the object’s size in bytes

— to get the the i*" object add i*sizeof(object)
* More details:
— int R[B] =R (i.e. an int* to 20 bytes of storage)
— R[i(]=*(R+i) (array offsets are just pointer arithmetic)
— int *p = &R[3] = p = (R+3) (p points to 3™ element of R)

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 9

Indirect Addressing

¢ What we want:

— The contents of a memory location held in a register

* Examples:

“c” “MIPS Assembly”
. Loads the “address”
int x = 10; . : @ — ofxinto$2, notits
main: ori $2,$0,x contents
main () { addi $3,$0,2
int *y = &x; sw $3,0($82)
*y = 2 ; jr $31

x: .word 10

e Caveats

— You must make sure that the register contains a valid address
(double, word, or short aligned as required)

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 10

Compilers as Template Matchers

* The basic task of a compiler is to scan a file looking for particular
sequences of operations and keywords called templates.

* The first major sort of template is an expression. We've already

played around converting C expressions to assembly language. A
compiler does basically the same thing.

X: .word O
Input: > Output: y: .word 0
C: .word 123456
int x, y; “ e
y = (x-3)*(y+123456) 1w $t0, x
addi St0, $tO0, -3
1w Stl, y
1w St2, c
add Stl, Stl, $t2
mul st0, $t0, Stl
SW $t0, y
e Oncea template is matched, a compiler emits a 5pecific code

sequence.

Comp 411 - Fall 2015 9/8/15

L5 — Addressing Modes 11

C Data Structures: Arrays

Memory:
The C source code

int hist[100]; hist:
int score = 2;

hist[score] += 1; _——§\\\\-—__

might translate to:

.align 2 score

hist: .space 400

score: .word 2
1w $24 ,score # $24 = score
sll $24,$24,2 # make word offset
addui $24,$24,hist # $24 = &hist[score] Hiotl 1
1w $15, ($24) # $15 = hist[score] Istlscore]
addui $15,$15,1 # $15 = $15 + 1
sSwW $15, ($24) # hist[score] +=1

Address:

CONSTANT base address +
YARIABLE offset computed from index

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 12

Displacement Addressing

¢ What we want:

— The contents of a memory location relative to a register

o Examples:
“MIPS Assembly”

“C”
int a[5]; main: addi $2,$0,3 $#i=23
addi $3,%0,2
main () { sll $1,$2,2
int i = 3; sw $3,a($1) . B
. _ . - pace or a O Integers
alil =2 jr %31 (20-bytes)
}
a: . Space 5. -4
e Caveats

— Must multiply (shift) the “index” to be properly aligned,
(i.e. to match the size of the type that the pointer references)

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 13

C Data Structures: Structs

e C%structs” are lightweight “container objects” — objects
with members, but no methods.

* There is special “Java-like” syntax for accessing

particular members: variable.member

(actually, Java’s dot operator “.” is borrowed from C)

* You can also have pointers to structs.

C provides an new operator to access them:

This simplifies the alternative syntax:

Comp 411 - Fall 2015

pointerVariable->member

(*pointerVariable).member

9/6/15

struct Point {
int x, y;

} P1, P2, *p;

Pl.x = 157;

p = &P1;
p->y = 123;

L5 — Addressing Modes 14

struct Point {

}

int x, y;
P2, *p;

Pl.x 157;
p = &P1;
p->y = 123;

might translate to:

Pl:
P2:

P:

Comp 411 - Fall 2015

.space 8
.space 8
.space 4

addiu $15,%0,157
sw $15,P1
addui $24,$0,P1
SW $24,p

1w $24,p
addiu $15,%$0,123
sw $15,4 ($24)

C Data Structures: Structs

Memory:

P1: P1.x —
Plly —
P2.x —

P2y —

P2:

Address:

VARIABLE base address +
CONSTANT com ponent offset

p—>y = 123

9/8/15 L5 — Addressing Modes 15

Offset Addressing

¢ What we want:

— The contents of a memory location relative to a register

o Examples:
“MIPS Assembly”

“C”
struct p { main: ori $1,80,p
int x, y; addi $2,$0,3
} sw $2,0($1)
addi $2,$0,2
main() { W $2,4(51) 2wt
p.x = 3; Jr $31 integers (8-bytes)
P.Y = 2; -4
} pP: . space 8 v\g
e Caveats

— Constants offset to the various fields of the structure

— Structures larger than 32K use a different approach

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 16

C/Assembly Translation: Conditionals

C code:

if (expr) {
STUFF

}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

Note: the branches used
in assembly “SKIP” code ‘,
blocks rather than cause

them to be executed.

This often results in a
complement test!

~

Comp 411 - Fall 2015

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lendif

(compile STUFF)
Lendif:

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lelse
(compile STUFFT)

beq $0, $0, Lendif
Lelse:

(compile STUFF2)
Lendif:

9/6/15

There are little tricks
that come into play
when compiling
conditional code
blocks. For instance,
the statement:

if (y > 32) {
X =x+1;

}

compiles to:
1w $24, y

ori §$15, $0, 32
slt $1, $15, S$24
beq $1, $0, Lendif
lw $24, x
addi $24, $24, 1
sSwW $24, x

Lendif:

L5 — Addressing Modes 17

C/Assembly Translation: Loops

C code: MIPS assembly: Alternate MIPS
Lwhile: assembly:

while (expr) { beq $0,%$0,Ltest

STUFF (compute expr in $rX)
} beq $rX,$0,Lendw Lwhile:

. (compile STUFF)
(compile STUFF) Ltest:
beq $0,$0,Lwhile

Lendu : (compute expr in $rx)

bne $rX,$0,Lwhile
Lendw:

Compilers spend a lot of time optimizing in and around loops.
- moving all possible computations outside of loops
- unrolling loops to reduce branching overhead
- simplifying expressions that depend on “loop variables™

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 18

C/Assembly Translation: For Loops

* Most high-level languages provide loop constructs that
establish and update an iterator, which controls the
loop’s behavior

for (initialization; conditional; afterthought) {

STU FF; For loops are the most
} commonly used form of
iteration found programming
languages.
Assembly:

Their advantage is readability.
_.. ~ They bring together the three

(Compile initialization) essential components of
Lfor: iteration, setting an initial

value, establishing a

(compute conditional in $rX) termination condition, and
giving an update rule.
beq $rX,$0,Lendfor

(compile STUFF)

(compile afterthought)

beq $0,$0,Lfor
Lendfor:

Ahhh, but one other
iteration forms there
arel

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 19

C/Assembly Translation: For Loops

* For loops with “for object in iterator” were added to Java
and its other modern descendents like Python. They

were not included in C.

C code:
int sum = 0;

int data[l0] =
{11213141516171819110};

int 1i;
for (i=0; i<10; i++) {
sum += data[i]

}

Comp 411 - Fall 2015

MIPS assembly:
sum:
.word 0xO0
data:
.word Ox1, 0x2,
.word 0x6, 0x7,

add $30,$0,5$0
Lfor:

lw $24,sum($0)

sll $15,$30,2

addu $24,$24,$15
sw $24,sum

add $30,$30,1
slt $24,$30,10
bne $24,$0,Lfor

Lendfor:

9/6/15

0x3, 0x4,
0x8,

lw $15,data($15)‘\8

0x5
0x9, Oxa

for-loop

semantics allow
__. — the compiler to
eliminate the
initial test if it
cannot be true as
a result of the
initialization.

L5 — Addressing Modes 20

Next Time

 The details behind assemblers
* 2-pass and 1-pass assembly

o Linkers and dynamic libraries

U
_vexy

Comp 411 - Fall 2015 9/8/15 L5 — Addressing Modes 21

