
Behind the Curtain 1 Comp 411 – Fall 2015 1/16/13

Behind the Curtain

1. Number representations
2. Computer organization
2. Computer Instructions
3. Memory concepts
4. Where should code go?
5. Computers as systems

Introduce TA
Friday 1st lab! (1:30-3:30)

(Do Prelab before)
1st Problem set on Thurs

Behind the Curtain 2 Comp 411 – Fall 2015 1/16/13

Signed-Numbers
•  The obvious method is to encode the sign of the integer using

 one bit. Conventionally, the most significant bit is used for
 the sign. This encoding for signed integers is called the
 SIGNED MAGNITUDE representation.

•  The Good:
-  Easy to negate, find absolute value

•  The Bad:
–  Add/subtract is complicated; depends on the signs
–  Two different ways of representing a 0

•  Not used that frequently in practice
-  with one important exception

S 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

€

v = −1S 2 i bi
i=0

n−2

∑
2000

1

-2000

Anything
 weird?

Behind the Curtain 3 Comp 411 – Fall 2015 1/16/13

2’s Complement Integers

20 21 22 23 … 2N-2 -2N-1 … …
N bits

The 2’s complement representation for signed integers is the
 most commonly used signed-integer representation. It is a
 simple modification of unsigned integers where the most
 significant bit is considered negative.

“binary” point “sign bit”
Range: – 2N-1 to 2N-1 – 1

€

v = −2n−1bn−1 + 2 i bi
i=0

n−2

∑
8-bit 2’s complement example:
 11010110 = –27 + 26 + 24 + 22 + 21

 = – 128 + 64 + 16 + 4 + 2 = – 42

Behind the Curtain 4 Comp 411 – Fall 2015 1/16/13

Why 2’s Complement?
 If we use a two’s complement representation for signed
 integers, the same binary addition mod 2n procedure will work
 for adding positive and negative numbers (don’t need separate
 subtraction rules). The same procedure will also handle
 unsigned numbers!

Example:
	5510 = 001101112	

 + 1010 = 000010102	
 	6510 = 010000012	

 5510 = 001101112	
+-1010 = 111101102	
 4510 = 1001011012	

When using signed
 magnitude
 representations, adding a
 negative value really means
 to subtract a positive
 value. However, in 2’s
 complement, adding is
 adding regardless of sign.
 In fact, you NEVER need to
 subtract when you use a
 2’s complement
 representation.

ignore this
 overflow

Behind the Curtain 5 Comp 411 – Fall 2015 1/16/13

2’s Complement Tricks
-  Negation – changing the sign of a number

-  First invert every bit (i.e. 1 → 0, 0 → 1)
-  Add 1
Example: 20 = 00010100, -20 = 11101011 + 1 = 11101100

-  Sign-Extension – aligning different sized
 2’s complement integers

-  Simply copy the sign bit into higher positions
-  16-bit version of 42 = 0000 0000 0010 1010
-  8-bit version of -2 = 1 1 1 1 1 110 1 1 1 1 1 1 1 1

Behind the Curtain 6 Comp 411 – Fall 2015 1/16/13

CLASS EXERCISE
10’s-complement Arithmetic

(You’ll never need to borrow again)

Step 1) Write down two 3-digit numbers that you
 want to subtract

Step 2) Form the 9’s-complement of each digit
 in the second number (the subtrahend)

0 → 9
1 → 8
2 → 7
3 → 6
4 → 5
5 → 4
6 → 3
7 → 2
8 → 1
9 → 0

Helpful Table of the
9’s complement for

each digit

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

What did you get? Why weren’t you taught to subtract this way?

Step 5) If your result was less than 1000,
 form the 9’s complement again and add 1
 and remember your result is negative
 else subtract 1000

Behind the Curtain 7 Comp 411 – Fall 2015 1/16/13

Fixed-Point Numbers
 By moving the implicit location of the “binary” point, we
 can represent signed fractions too. This has no effect
 on how operations are performed, assuming that the
 operands are properly aligned.

 1101.0110 = –23 + 22 + 20 + 2-2 + 2-3
 = – 8 + 4 + 1 + 0.25 + 0.125
 = – 2.625

 OR
1101.0110 = -42 * 2-4 = -42/16 = -2.625

-23 22 21 20 2-1 2-2 2-3 2-4

Behind the Curtain 8 Comp 411 – Fall 2015 1/16/13

Repeated Binary Fractions
 Not all fractions can be represented exactly using a finite
 representation. You’ve seen this before in decimal notation
 where the fraction 1/3 (among others) requires an infinite
 number of digits to represent (0.3333…).

 In Binary, a great many fractions that you’ve grown attached to
 require an infinite number of bits to represent exactly.

 EX: 1 / 10 = 0.110 = .000110011…2

 1 / 5 = 0.210 = .0011…2 = 0.3…16

Behind the Curtain 9 Comp 411 – Fall 2015 1/16/13

Bias Notation
•  There is yet one more way to represent signed integers, which is

 surprisingly simple. It involves subtracting a fixed constant
 from a given unsigned number. This representation is called
 “Bias Notation”.

€

v = 2 i bi
i=0

n−1

∑ −Bias 1 1 0 1 0 1 1 0
20 25 24 23 22 21 26 27

EX: (Bias = 127)
6 * 1 = 6

13 * 16 = 208
 - 127
 87

Why? Monotonicity

Behind the Curtain 10 Comp 411 – Fall 2015 1/16/13

Floating Point Numbers
 Another way to represent numbers is to use a notation similar
 to Scientific Notation. This format can be used to represent
 numbers with fractions (3.90 x 10-4), very small numbers (1.60
 x 10-19), and large numbers (6.02 x 1023). This notation uses
 two fields to represent each number. The first part represents
 a normalized fraction (called the significand), and the second
 part represents the exponent (i.e. the position of the “floating”
 binary point).

€

Normalized Fraction × 2Exponent

Normalized Fraction Exponent

“dynamic range” “bits of accuracy”

Behind the Curtain 11 Comp 411 – Fall 2015 1/16/13

IEEE 754 Format
-  Single precision format

-  Example

1 23 8

S Significand Exponent

This is effectively a
 signed magnitude

 fixed-point number with
 a “hidden” 1.

The 1 is hidden
 because it
 provides no
 information

 after the
 number is

 “normalized”

The exponent is
 represented

in bias 127
 notation. Why?

v = -1s x 1.Significand x 2Exponent-127

 42.75 = 00101010.110000002
Normalize: 001.0101011000002 x 25

 (127+5)

0 10000100 010101100000000000000002
0100 0010 0010 1011 0000 0000 0000 00002

 42.75 = 0x422B000016

Behind the Curtain 12 Comp 411 – Fall 2015 1/16/13

IEEE 754 Format
-  Single precision limitations

-  A little more than 7 decimal digits of precision
-  minimum positive normalized value: ~1.18 x 10-38

-  maximum positive normalized value: ~3.4 x 1038

-  Inaccuracies become evident after multiple single precision
 operations

-  Double precision format

1

S

52

Significand

11

Exponent

v = -1s x 1.Significand x 2Exponent-1023

Behind the Curtain 13 Comp 411 – Fall 2015 1/16/13

Summary
1)  Selecting the encoding of information has important

 implications on how this information can be processed, and
 how much space it requires.

2)  Computer arithmetic is constrained by finite representations,
 this has advantages (it allows for complement arithmetic) and
 disadvantages (it allows for overflows, numbers too big or
 small to be represented).

3)  Bit patterns can be interpreted in an endless number of ways,
 however important standards do exist
-  Two’s complement
-  IEEE 754 floating point

Behind the Curtain 14 Comp 411 – Fall 2015 1/16/13

Computers Everywhere

•  The computers we are used to
-  Desktops

-  Laptops

-  Embedded processors
•  Cars
•  Light bulbs
•  Mobile phones
•  Toasters, irons, wristwatches, happy-meal toys

Behind the Curtain 15 Comp 411 – Fall 2015 1/16/13

Computer Organization

·  Every computer has at least three basic units
-  Input/Output

•  where data arrives from the outside world
•  where data is sent to the outside world
•  where data is archived for the long term (i.e. when the lights go out)

-  Memory
•  where data is stored (numbers, text, lists, arrays, data structures)

-  Central Processing Unit
•  where data is manipulated, analyzed, etc.

I/O
(Input/Output)

CPU
(Central

Processing Unit)
Memory

Where bits arrive from and
 are sent to

Where bits are processed Where bits are stored

Behind the Curtain 16 Comp 411 – Fall 2015 1/16/13

Computer Organization (cont)

·  Properties of units
-  Input/Output

•  must convert symbols to bits and vice versa
•  where the analog “real world” meets the digital “computer world”
•  must somehow synchronize to the CPU’s clock

-  Memory
•  stores bits in “addressable” units, such as bytes or words
•  every memory unit has an “address” and “contents”, like a mailbox

-  Central Processing Unit
•  besides processing, it also coordinates data’s movements between units

keyboard
hard drive

display

adder
shifter
logic

01001010
10001001
11100000

I/O CPU Memory

Behind the Curtain 17 Comp 411 – Fall 2015 1/16/13

What Sorts of Processing?
A CPU performs low-level operations called INSTRUCTIONS

 Arithmetic
-  ADD X to Y then put the result in Z
-  SUBTRACT X from Y then put the result back in Y

 Logical
-  Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)
-  Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)

 Comparison
-  Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0
-  Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0

 Control
-  Skip the next INSTRUCTION if Z is EQUAL to 0

Behind the Curtain 18 Comp 411 – Fall 2015 1/16/13

Anatomy of an Instruction
Nearly all instructions can be made to fit a common template

 OPCODE DESTINATION, OPERAND1, OPERAND2

Issues remaining ...
•  Which operations to include?
•  Where to get variables and constants?
•  Where to store the results?

What to do:
ADD
SUB
AND
OR
SEQ
SGE
SEQ

Who to apply
the operation to…

variables, constants, etc..

Where to put
the result

Memory

CPU

Behind the Curtain 19 Comp 411 – Fall 2015 1/16/13

Memory Concepts
•  Memory is divided into “addressable”

 blocks, each with an address (like an
 array with indices)

•  Addressable blocks are usually larger
 than a bit, typically 8, 16, 32, or 64
 bits

•  Each address has variable “contents”
•  Contents might be:

•  Integers in 2’s complement
•  Floats in IEEE format
•  Strings in ASCII or Unicode
•  Data structure de jour
•  ADDRESSES
•  Nothing distinguishes the difference

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 0c3c1d7fff

9 0x37bdfffc

10 0x24040090

11 0x0c00000e

12 0x1000ffff

13 -100

14 0x00004020

15 0x20090001

Behind the Curtain 20 Comp 411 – Fall 2015 1/16/13

One More Thing…
•  INSTRUCTIONS for the CPU are stored in

memory along with data
•  CPU fetches instructions, decodes them

and then performs their implied operation
•  Mechanism inside the CPU directs which

instruction to get next.
•  They appear in memory as a string of

bits that are typically uniform in size
•  Their encoding as “bits” is called

“machine language.” ex: 0c3c1d7fff
•  We assign “mnemonics” to particular

bit patterns to indicate meanings.
These mnemonics are called assembly
language. ex: lui $sp, 0x7fff

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 lui $sp,0x7fff

9 ori $sp,$sp,0x7fff

10 addiu $a0,$0,144

11 jal 0x0000000e

12 beq $0,$0,0x0c

13 -100

14 add $t0,$0,$0

15 addi $t1,$0,1

Behind the Curtain 21 Comp 411 – Fall 2015 1/16/13

A Bit of History
·  There is a commonly reoccurring debate over whether “data” and

 “instructions” should be mixed. Leads to two common flavors
 of computer architectures

I/O
(Input/Output)

CPU
(Central

Processing Unit) Data Memory

I/O
(Input/Output)

CPU
(Central

Processing Unit)

Unified
Memory

Program Mem
“Harvard” Architecture

“Von Neumann” Architecture

Behind the Curtain 22 Comp 411 – Fall 2015 1/16/13

A Bit of History
·  Harvard Architecture

-  Instructions and data do not interact, they can
have different “word sizes” and exist in different
“address spaces”

-  Advantages:
•  No self-modifying code (a common hacker trick)
•  Optimize word-lengths of instructions for control and data for applications
•  Higher Throughput (i.e. you can fetch data and instructions from their

 memories simultaneously)

-  Disadvantages:
•  The H/W designer decides the trade-off between how big of a program and

 how large are data
•  Hard to write “Native” programs that generate new programs

(i.e. assemblers, compliers, etc.)
•  Hard to write “Operating Systems” which are programs that at various

 points treat other programs as data (i.e. loading them from disk into
 memory, swapping out processes that are idle)

Howard Aiken:
 Architect of the
 Harvard Mark 1

Behind the Curtain 23 Comp 411 – Fall 2015 1/16/13

A Bit of History
·  Von Neumann Architecture

-  Instructions and data are indistinguishable bits in a
common memory that share a common “word size”
and “address space”

-  Most common model used today, and what we assume in 411
-  Advantages:

•  S/W designer decides how to allocate memory between data and programs
•  Can write “Native” programs to create new programs

 (assemblers and compliers)
•  Programs and subroutines can be loaded, relocated, and modified by other

 programs (dangerous, but powerful)
-  Disadvantages:

•  Word size must suit both common data types and instructions
•  Slightly lower performance due to memory bottleneck (mediated in modern

 computers by the use of separate program and data caches)
•  We need to be very careful when treading on memory. Folks have taken

 advantage of the program-data unification to introduce viruses.

John Von Neumann:
 Proponent of unified
 memory architecture

Behind the Curtain 24 Comp 411 – Fall 2015 1/16/13

Compiler for (i = 0; i < 3; i++)
 m += i*i;

Assembler and Linker addi $8, $6, $6
 sll $8, $8, 4 CPU

Module
ALU A B

Cells
 A B
CO CI
 S

FA

Computer Systems
•  What is a computer system?
•  Where does it start?
•  Where does it end?

Gates

Transistors

Behind the Curtain 25 Comp 411 – Fall 2015 1/16/13

Computers as Translators

Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a
 “lower-level” problem that is closer the simple instructions that
 it understands

•  High-Level Languages
!  Compilers
!  Interpreters

•  Assembly Language

x: .word 0
y: .word 0
c: .word 123456

...
lw $t0, x
addi $t0, $t0, -3
lw $t1, y
lw $t2, c
add $t1, $t1, $t2
mul $t0, $t0, $t1
sw $t0, y

int x, y;
y = (x-3)*(y+123456)

Behind the Curtain 26 Comp 411 – Fall 2015 1/16/13

Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a
 “lower-level” problem that is closer the simple instructions that
 it understands

•  Assembly Language
•  Machine Language

Computers as Translators

x: .word 0
y: .word 0
c: .word 123456

...
lw $t0, x
addi $t0, $t0, -3
lw $t1, y
lw $t2, c
add $t1, $t1, $t2
mul $t0, $t0, $t1
sw $t0, y

0x04030201
0x08070605
0x00000001
0x00000002
0x00000003
0x00000004
0x706d6f43

Behind the Curtain 27 Comp 411 – Fall 2015 1/16/13

Why So Many Languages?

•  Application Specific
!  Pre-historically: COBOL vs. Fortran
!  Middle ages: C++ vs. Objective C
!  Recent Past: C# vs. Java
!  Today: Python vs. Matlab

•  Code Maintainability
!  High-level specifications are

easier to understand and modify

•  Code Reuse
•  Code Portability
•  Virtual Machines

Behind the Curtain 28 Comp 411 – Fall 2015 1/16/13

Next Time

•  A complete Instruction Set
•  Assembly Language
• Machine Language

