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Behind the Curtain 

1. Number representations  
2. Computer organization 
2. Computer Instructions 
3. Memory concepts 
4. Where should code go? 
5. Computers as systems 

Introduce TA 
Friday 1st lab! (1:30-3:30) 

(Do Prelab before) 
1st Problem set on Thurs 
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Signed-Numbers 
•  The obvious method is to encode the sign of the integer using

 one bit. Conventionally, the most significant bit is used for
 the sign. This encoding for signed integers is called the
 SIGNED MAGNITUDE representation. 

•  The Good:   
-  Easy to negate, find absolute value 

•  The Bad: 
–  Add/subtract is complicated; depends on the signs 
–  Two different ways of representing a 0 

•  Not used that frequently in practice 
-  with one important exception 

S 210 29 28 27 26 25 24 23 22 21 20 
0 1 1 1 1 1 0 1 0 0 0 0 

€ 

v = −1S 2 i bi
i=0

n−2

∑
2000 

1 

-2000 

Anything
 weird? 
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2’s Complement Integers 

20 21 22 23 … 2N-2 -2N-1 … … 
N bits 

The 2’s complement representation for signed integers is the
 most commonly used signed-integer representation. It is a
 simple modification of unsigned integers where the most
 significant bit is considered negative. 

“binary” point “sign bit” 
Range: – 2N-1  to  2N-1 – 1 

€ 

v = −2n−1bn−1 + 2 i bi
i=0

n−2

∑
8-bit 2’s complement example: 
    11010110  = –27 + 26 + 24 + 22 + 21 

   = – 128 + 64 + 16 + 4 + 2 = – 42 
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Why 2’s Complement? 
 If we use a two’s complement representation for signed
 integers, the same binary addition mod 2n procedure will work
 for adding positive and negative numbers (don’t need separate
 subtraction rules).  The same procedure will also handle
 unsigned numbers! 

Example: 
	5510  = 001101112	

   + 1010  = 000010102	
 	6510  = 010000012	

   5510 =  001101112	
+-1010 =  111101102	
  4510 = 1001011012	

When using signed
 magnitude
 representations, adding a
 negative value really means
 to subtract a positive
 value. However, in 2’s
 complement, adding is
 adding regardless of sign.
 In fact, you NEVER need to
 subtract when you use a
 2’s complement
 representation. 

ignore this
 overflow 
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2’s Complement Tricks 
-  Negation – changing the sign of a number 

-  First invert every bit (i.e. 1 → 0, 0 → 1) 
-  Add 1 
Example:  20 = 00010100, -20 = 11101011 + 1 = 11101100 

-  Sign-Extension – aligning different sized  
   2’s complement integers 

-  Simply copy the sign bit into higher positions 
-  16-bit version of 42  = 0000 0000 0010 1010 
-  8-bit version of -2  =                         1 1 1 1  1 110 1 1 1 1  1 1 1 1 
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CLASS EXERCISE 
10’s-complement Arithmetic  

(You’ll never need to borrow again) 

Step 1)  Write down two 3-digit numbers that you  
 want to subtract 

Step 2) Form the 9’s-complement of each digit 
 in the second number (the subtrahend) 

0 → 9 
1 → 8 
2 → 7 
3 → 6 
4 → 5 
5 → 4 
6 → 3 
7 → 2 
8 → 1 
9 → 0 

Helpful Table of the 
9’s complement for 

each digit 

Step 3) Add 1 to it (the subtrahend) 

Step 4) Add this number to the first 

What did you get? Why weren’t you taught to subtract this way? 

Step 5) If your result was less than 1000, 
 form the 9’s complement again and add 1 
 and remember your result is negative 
 else subtract 1000 
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Fixed-Point Numbers 
 By moving the implicit location of the “binary” point, we
 can represent signed fractions too. This has no effect
 on how operations are performed, assuming that the
 operands are properly aligned. 

     1101.0110  = –23 + 22 + 20 + 2-2 + 2-3 
               = – 8 + 4 + 1 + 0.25 + 0.125 
               = – 2.625 

        OR 
1101.0110      = -42 * 2-4 = -42/16 = -2.625 

-23 22 21 20 2-1 2-2 2-3 2-4 
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Repeated Binary Fractions 
 Not all fractions can be represented exactly using a finite
 representation. You’ve seen this before in decimal notation
 where the fraction 1/3 (among others) requires an infinite
 number of digits to represent (0.3333…). 

 In Binary, a great many fractions that you’ve grown attached to
 require an infinite number of bits to represent exactly. 

  EX:   1 / 10 = 0.110 = .000110011…2 

    1 / 5 = 0.210 = .0011…2 = 0.3…16 
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Bias Notation 
•  There is yet one more way to represent signed integers, which is

 surprisingly simple. It involves subtracting a fixed constant
 from a given unsigned number. This representation is called 
 “Bias Notation”. 

€ 

v = 2 i bi
i=0

n−1

∑ −Bias 1 1 0 1 0 1 1 0 
20 25 24 23 22 21 26 27 

EX: (Bias = 127) 
6 * 1   =        6 

13 * 16   =   208 
       - 127 
         87 

Why? Monotonicity 
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Floating Point Numbers 
 Another way to represent numbers is to use a notation similar
 to Scientific Notation. This format can be used to represent
 numbers with fractions (3.90 x 10-4), very small numbers (1.60
 x 10-19), and large numbers (6.02 x 1023). This notation uses
 two fields to represent each number. The first part represents
 a normalized fraction (called the significand), and the second
 part represents the exponent (i.e. the position of the “floating”
 binary point).  

€ 

Normalized Fraction × 2Exponent

Normalized Fraction Exponent 

“dynamic range” “bits of accuracy” 
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IEEE 754 Format 
-  Single precision format 

-  Example 

1 23 8 

S Significand Exponent 

This is effectively a
 signed magnitude 

 fixed-point number with
 a “hidden” 1. 

The 1 is hidden
 because it
 provides no
 information

 after the
 number is

 “normalized” 

The exponent is
 represented  

in bias 127
 notation. Why? 

v = -1s x 1.Significand x 2Exponent-127 

          42.75 = 00101010.110000002 
Normalize:             001.0101011000002 x 25 

       (127+5) 

0 10000100 010101100000000000000002 
0100 0010 0010 1011 0000 0000 0000 00002 

  42.75 = 0x422B000016 
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IEEE 754 Format 
-  Single precision limitations 

-  A little more than 7 decimal digits of precision 
-  minimum positive normalized value: ~1.18 x 10-38 

-  maximum positive normalized value: ~3.4 x 1038 

-  Inaccuracies become evident after multiple single precision
 operations  

-  Double precision format 

1 

S 

52 

Significand 

11 

Exponent 

v = -1s x 1.Significand x 2Exponent-1023 



Behind the Curtain 13 Comp 411 – Fall 2015 1/16/13 

Summary 
1)  Selecting the encoding of information has important

 implications on how this information can be processed, and
 how much space it requires. 

2)  Computer arithmetic is constrained by finite representations,
 this has advantages (it allows for complement arithmetic) and
 disadvantages (it allows for overflows, numbers too big or
 small to be represented).  

3)  Bit patterns can be interpreted in an endless number of ways,
 however important standards do exist 
-  Two’s complement 
-  IEEE 754 floating point 
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Computers Everywhere 

•  The computers we are used to 
-  Desktops 

-  Laptops 

-  Embedded processors 
•  Cars 
•  Light bulbs 
•  Mobile phones 
•  Toasters, irons, wristwatches, happy-meal toys 
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Computer Organization 

·  Every computer has at least three basic units 
-  Input/Output 

•  where data arrives from the outside world 
•  where data is sent  to the outside world 
•  where data is archived for the long term (i.e. when the lights go out) 

-  Memory 
•  where data is stored (numbers, text, lists, arrays, data structures) 

-  Central Processing Unit 
•  where data is manipulated, analyzed, etc. 

I/O 
(Input/Output) 

CPU 
(Central  

Processing Unit) 
Memory 

Where bits arrive from and
 are sent to 

Where bits are processed Where bits are stored 
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Computer Organization (cont) 

·  Properties of units 
-  Input/Output 

•  must convert symbols to bits and vice versa 
•  where the analog “real world” meets the digital “computer world” 
•  must somehow synchronize to the CPU’s clock 

-  Memory 
•  stores bits in “addressable” units, such as bytes or words 
•  every memory unit has an “address” and “contents”, like a mailbox 

-  Central Processing Unit 
•  besides processing, it also coordinates data’s movements between units  

keyboard 
hard drive 

display 

adder 
shifter 
logic 

01001010 
10001001 
11100000 

I/O CPU Memory 
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What Sorts of Processing? 
A CPU performs low-level operations called INSTRUCTIONS 

 Arithmetic 
-  ADD X to Y then put the result in Z 
-  SUBTRACT X from Y then put the result back in Y 

 Logical 
-  Set Z to 1 if X AND Y are 1, otherwise set Z to 0 

(AND X with Y then put the result in Z) 
-  Set Z to 1 if X OR Y are 1, otherwise set Z to 0 

(OR X with Y then put the result in Z) 

 Comparison 
-  Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0 
-  Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0 

 Control 
-  Skip the next INSTRUCTION if Z is EQUAL to 0 
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Anatomy of an Instruction 
Nearly all instructions can be made to fit a common template 

    OPCODE   DESTINATION, OPERAND1, OPERAND2 

Issues remaining ... 
•  Which operations to include? 
•  Where to get variables and constants? 
•  Where to store the results? 

What to do: 
ADD 
SUB 
AND 
OR 
SEQ 
SGE 
SEQ 

Who to apply 
the operation to… 

variables, constants, etc.. 

Where to put 
the result 

Memory 

CPU 
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Memory Concepts 
•  Memory is divided into “addressable”

 blocks, each with an address (like an
 array with indices) 

•  Addressable blocks are usually larger
 than a bit, typically 8, 16, 32, or 64
 bits 

•  Each address has variable “contents” 
•  Contents might be: 

•  Integers in 2’s complement 
•  Floats in IEEE format 
•  Strings in ASCII or Unicode 
•  Data structure de jour 
•  ADDRESSES 
•  Nothing distinguishes the difference 

Address Contents 

0 42 

1 3.141592 

2 “Lee “ 

3 “Hart” 

4 “Bud “ 

5 “Levi” 

6 “le   “ 

7 2 

8 0c3c1d7fff 

9 0x37bdfffc 

10 0x24040090 

11 0x0c00000e 

12 0x1000ffff 

13 -100 

14 0x00004020 

15 0x20090001 
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One More Thing… 
•  INSTRUCTIONS for the CPU are stored in 

memory along with data 
•  CPU fetches instructions, decodes them 

and then performs their implied operation 
•  Mechanism inside the CPU directs which 

instruction to get next. 
•  They appear in memory as a string of 

bits that are typically uniform in size 
•  Their encoding as “bits” is called 

“machine language.” ex: 0c3c1d7fff 
•  We assign “mnemonics” to particular 

bit patterns to indicate meanings. 
These mnemonics are called assembly 
language. ex: lui $sp, 0x7fff 

Address Contents 

0 42 

1 3.141592 

2 “Lee “ 

3 “Hart” 

4 “Bud “ 

5 “Levi” 

6 “le   “ 

7 2 

8 lui $sp,0x7fff 

9 ori $sp,$sp,0x7fff 

10 addiu $a0,$0,144 

11 jal 0x0000000e 

12 beq $0,$0,0x0c 

13 -100 

14 add $t0,$0,$0 

15 addi $t1,$0,1 
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A Bit of History 
·  There is a commonly reoccurring debate over whether “data” and

 “instructions” should be mixed. Leads to two common flavors
 of computer architectures  

I/O 
(Input/Output) 

CPU 
(Central  

Processing Unit) Data Memory 

I/O 
(Input/Output) 

CPU 
(Central  

Processing Unit) 

Unified 
Memory 

Program Mem 
“Harvard” Architecture 

“Von Neumann” Architecture 
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A Bit of History 
·  Harvard Architecture 

-  Instructions and data do not interact, they can  
have different “word sizes” and exist in different  
“address spaces” 

-  Advantages: 
•  No self-modifying code (a common hacker trick) 
•  Optimize word-lengths of instructions for control and data for applications 
•  Higher Throughput (i.e. you can fetch data and instructions from their

 memories simultaneously) 

-  Disadvantages: 
•  The H/W designer decides the trade-off between how big of a program and

 how large are data 
•  Hard to write “Native” programs that generate new programs  

(i.e. assemblers, compliers, etc.) 
•  Hard to write “Operating Systems” which are programs that at various

 points treat other programs as data (i.e. loading them from disk into
 memory, swapping out processes that are idle) 

Howard Aiken:
 Architect of the
 Harvard Mark 1 
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A Bit of History 
·  Von Neumann Architecture 

-  Instructions and data are indistinguishable bits in a  
common memory that share a common “word size”  
and “address space” 

-  Most common model used today, and what we assume in 411 
-  Advantages: 

•  S/W designer decides how to allocate memory between data and programs 
•  Can write “Native” programs to create new programs  

 (assemblers and compliers) 
•  Programs and subroutines can be loaded, relocated, and modified by other

 programs (dangerous, but powerful) 
-  Disadvantages: 

•  Word size must suit both common data types and instructions  
•  Slightly lower performance due to memory bottleneck (mediated in modern

 computers by the use of separate program and data caches) 
•  We need to be very careful when treading on memory. Folks have taken

 advantage of the program-data unification to introduce viruses. 

John Von Neumann:
 Proponent of unified
 memory architecture 
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Compiler  for (i = 0; i < 3; i++) 
                               m += i*i; 

Assembler and Linker addi $8, $6, $6 
                       sll $8, $8, 4 CPU 

Module 
ALU A B 

Cells 
   A       B 
CO          CI 
        S 

FA 

Computer Systems 
•  What is a computer system?   
•  Where does it start? 
•  Where does it end? 

Gates 

Transistors 
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Computers as Translators 

Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a  
 “lower-level” problem that is closer the simple instructions that
 it understands 

•  High-Level Languages 
!  Compilers 
!  Interpreters 

•  Assembly Language 

x:  .word 0 
y:  .word 0 
c:  .word 123456 

... 
lw   $t0, x 
addi  $t0, $t0, -3 
lw   $t1, y 
lw   $t2, c 
add  $t1, $t1, $t2 
mul  $t0, $t0, $t1 
sw   $t0, y  

int x, y; 
y = (x-3)*(y+123456) 
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Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a  
 “lower-level” problem that is closer the simple instructions that
 it understands 

•  Assembly Language 
•  Machine Language 

Computers as Translators 

x:  .word 0 
y:  .word 0 
c:  .word 123456 

... 
lw   $t0, x 
addi  $t0, $t0, -3 
lw   $t1, y 
lw   $t2, c 
add  $t1, $t1, $t2 
mul  $t0, $t0, $t1 
sw   $t0, y  

0x04030201   
0x08070605   
0x00000001   
0x00000002 
0x00000003   
0x00000004   
0x706d6f43 
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Why So Many Languages? 

•  Application Specific 
!  Pre-historically: COBOL vs. Fortran 
!  Middle ages:  C++ vs. Objective C 
!  Recent Past: C# vs. Java 
!  Today: Python vs. Matlab 

•  Code Maintainability 
!  High-level specifications are  

easier to understand and modify  

•  Code Reuse 
•  Code Portability 
•  Virtual Machines 
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Next Time 

•  A complete Instruction Set 
•  Assembly Language 
• Machine Language 


