ALMOST OVER

Qo / -
- ~
o
) Last Problem Set is due Ton

ight
2) Flhal Exam on Thur'sday 12/8 ?—r'om noon-3pm
40 guestions - Open book., open hotes, open internet

~20 on Pipelining, Pipelining CPUs, caches, virtual memory
~20 on earlier course material

1/29/2022 Comp 3l - Fall 2022

UsiNG CACHES WITH VIRTVAL MEMORY |

——,

Virtual Cache Physical Cache
Tags match virtual addresses Tags match physical addresses

These TAGs are physical, they hold
oddresses after translation.

i ™ __| Dynamic m; - «|Dynamic
Disk
The Cache TAGs are virtual, Disk

they represent addresses
betore translation

o Problem: cache becomes ® Avoids stdle cache data
invalid after context switch alter con+ex+. switch
e FAST: No MMU time on HIT e SLOW: MMU time on HIT

Physically addressed Caches are
the trend because they better
9uppor‘+ Par'allel Proceseing

1/29/2022 Comp 3l - Fall 2022 2

BEST 6F BOoT™H WORLDS

CPU

1 Disk \

| Dynamic

AM

| 'MMU
(_A_\ l
VPN PPN
—— !

L CACHE

OBSERVATION: IF cache line selection is based on unmapped page
ofFfset bits, RAM access in a physical cache can overlap page map
access. Tag From cache is comPar'ed with physical page number

From MMU.

Want ‘small' cache index / small page size — go with more associativity

1/29/2.022

Cow?‘%—

Fall 2022

VIRTVAL MACHINES + THE OS5 KERNEL — ==

DILBERT by Scott Adams

MY B0OSS SAYS WE
NEED SOME EUNUCH
PROGRAMMERS .

1/29/2.022

E-Mail: SCOTTADAMS@®AOL COM

3. Admms,

1 THINK HE MEANS
UNIX NOT EUNVCHS.
AND I ALREADY
KNOL UNTIX. .

70" 4
© 1993 United Feature Syndicate, inc.

IF THE COMPANY
NURSE DROPS BY,
TELL HER I SALD
"NEVER MIND.”

AN

o/ \]

Comp 3l - Fall 2022

POWER OF CONTEXTS: SHARING A CPV

Virtual Physical ___ Virtuadl Every application can be
Memory 102 M mory P Memory 2 written as it it has access
]) — [_[to all of memory, without
[~ 1 —0 cohsidering where other
. \ ng
~_ applications reside.
\\ (S (S
\\ More than Virtual Memory
S - A VIRTUAL MACHINE

L. TIMESHARING among several programs —
- Programs diternate running in time slices called "Quanta’
- Separate context for each program
- OS loads appropriate context into pagemap when switching among pgms

2. Separate context for Os 'Kernel' (eg interrupt handiers)..
. '’Kernel' vs ‘User' contexts

. Switch to Kernel context on interrupt, " What is +his
- Switch back on interrupt return OS KERNEL
+hingy?

12/05 /2018 Comp 41 - Fall 2018

BUILDING A VIRTVAL MACHINE

PROCESS #0 physical PROCESS #

memory PO memory
P
PO
PI
shared
?
PO

Pl
Context #0 2 Context #

?

Goal give each program its own “VIRTUAL MACHINE',
programs don't *know" about each other-.

Abstraction: create a PROCESS, with its own
- machine state: 0, ., riG, psr - program (w/ possibly shared code)
. context (pagemap) . virtual I/O devices (console..)
- stack

12/05 /2018 Comp 41 - Fall 2018

a

f

MULTIPLEXING THE CPV

When this process is

@-

interrupted §
We RETURN +o this Process! ? L
2.
PRo%Ess Og;::\:r:a pRoICEss
D T
"+ 1 2E
¥ T > "
K//'*///' 3.
—— ¥ T —1
| T e N S g
D e S i s S
'///v*///v 4.
D D e R D s SR
-1 a1
/ /F\ Y

@ © 2 5.

And, vice versa.
Result: Both processes get executed,

and no one is the wiser
12./05 /2.018

Kunnina in process #0

Stop execution of process #0
either because of explicit yield or
some sort of timer interrupt
trap to handier code, saving
current PC in $27 ($k)

First: save process #0 state
(r'egs, context) Then: load
process # state (r'egs, context)
‘Return’ to process #t just like a
return from other trap handers
(ex jr 427) but we're returning
from a diFFerent trap than
happened in step 2!

Kunning in process #

Comp 41 - Fall 208

STACK-BASED INTERRVPT HANDLING

BASIC SEQUENCE: _\

+ Program A is running when some EVENT happens.
+ PROCESSOR STATE saved onh stack (ke a procedure CALL)
+ The HANDLER program to be run is selected
+ HANDLER runs to completion

old sp—»
- State of interrupted program A is re-installed Saved
.) . . State
Program A continues, unaware ofF interruption N
Sp

CHARACTERISTICS:
- TRANSPARENT to interrupted Prograrrﬂ
+ Handler runs to completion before returning

- Obeys stack discipline: handler can ‘borrow' stack from
interrupted program (and return it unchanged) or use a

special handler stack. —__

12./05 /2018 Comp 41 - Fall 208

EXTERNAL (ASYNCHRONOVS) TNTERRVPTS

ExamPIe:
$y9+em maintains current time of day (TOD) count at a wel-known
memory location that can be accessed by programs.
This value must be updated Per'iodically in response to
A clock ‘interupt' +r'|aaer'ed perhaps 100 times per second

Program A (Application)
- Executes instructions of the user program
- Doesn't want to know dbout clock interrupts
- Checks TOD on examining the memory location
Clock Handler
- GUTS: Sequence of instructions that increments TOD. Written in C.

- Entry/Exit sequences save & restore in+er'r'up+ec| state, call the C
handler. Written as assembler ‘stubs’

12./05 /2018 Comp 41 - Fall 208

INTERRVPT HANDLER CODING

‘Interrupt stub' (written in assembly)

Clock _h: sw tp,savetp

lui tp, (User>>12) # make tp point to

addi tp,tp,User # “User” struct

SwW x1,0(tp) # Save registers of
sSwW x2,4 (tp) # interrupted

e # application pgm..

SwW x31,124 (tp) # program

addi sp,x0,KStack # Use KERNEL stack

jal Clock Handler # call handler

1w x1,0(tp) # Restore saved

lw x2,4 (tp) # registers

1w x31,124 (tp)
1w tp,savetp
jalr x1 # Return to app.

Handler (written in C)

long TimeOfDay;
struct Mstate { int x1,x2,..,x31 } User;

/* Executed 60 times/sec */
Clock Handler() {
TimeOfDay = TimeOfDay + 1;

}
12/05 /2018 Comp 41 - Fall 2018

TIME-SHARING THE CPV

We can make a small modification 1o our clock

handler implement {ime sharing

long TimeOfDay;
struct Mstate { int R1,R2,.,SP,LP,PC } User;

/* Executed 100 times/sec */
Clock Handler() {
TimeOfDay = TimeOfDay + 10;

}

Our clock. Handler

calls another

94

if (TimeOfDay % QUANTUM == 0) Scheduler() ;W

/

- Function

A Quantum is that smallest time-interval that we

dlocate to a process, +ypically tHhis miﬁanr be 50 to
00 mMmS. (AchuaIIy, most OS Kernels vary this
number based on the processes Pr'iorier).

12/05 /2018 Comp 41 - Fall 2018

SIMPLE TIMESHARING SCHEDVLER

long TimeOfDay;
struct Mstate { int R1l,R2,..,SP,LP,PC } User;

(PCB = Process Control Block)

struct PCB {

struct MState State; /* Processor state */
Context PageMap; /* VM Map for proc */
int DPYNum; /* Console number *x/
} ProcTbl|[N]; /* one per process * /
int Cur = 0; /* “Active” process */

Scheduler () {

ProcTbl[Cur] .State = User; /* Save Cur state */
Cur = (Cur+l) % N; /* Incr mod N *x /
User = ProcTbl|[Cur].State; /* Install for next User */

12./05 /2018 Comp 41 - Fall 208

AVOIDING RE-ENTRANCE

Handlers which are interruptable are caled RE-ENTRANT, and pose
special problems.. miniARM, like many systems, disdllows reentrant
in+er'r'up+9! Mechahism: Interrupts are disabled in "Kernel Mode":

main() Kernhel mode is another bit in
USER mode {.. the PSR
(Application) N /
} | K=0 '
Clock_Handler() Scheduler|() K=1
KERNEL ° "
mode "~ y
(Op Sys)

12./05 /2018 Comp 41 - Fall 208

OTHER INTERRVPT SOVRCES

Asynchronous lnpu+s=
Keyboar'cl mouse evenhts, disk access, etc.

Ex: On a keystrike a special type of handler
called a ‘device driver" saves the key—coc/e at
a known location (much like the TimquCDay
variable) and clears a 'buffer empty" ﬁlag.

User code reads this value when
needed From the known location
But, if no key has been struck,

what then?

12/05 /2018 Comp 41 - Fall 2018

WaITING IS WASTEFVUL

The user code could sit in a loop waiting fFor the IouF»Per'—empi-y
location to be cleared This is called a ‘spin-lock”.

This procedure is possibly user code.

keycodeType ReadKey ()
{
int kbdnum = ProcTbl[Cur] .DPYNum;
while (BufferEmpty (kbdnum)) {
/* Nothing to do but wait */

}
return ReadInputBuffer (kbdnum) ;

}

Wastes CPU cycles until quantum is over.

12/05 /2018 Comp 41 - Fall 2018

READKEY SYNCHRONOVS SYSCALL

This procedure is performed as a kernel service..
P pe

keycodeType ReadKey Handler ()

{

}

int kbdnum = ProcTbl[Cur] .DPYNum;

if (BufferEmpty (kbdnum)) {
User.pc = User.pc - 4;
Scheduler() ;

}
return ReadInputBuffer (kbdnum) ;

BETTER: On I/O wait, YELD rermainder of time slot (quan+um)-.

RESULT: Better CPU utiizationl Samples event every quan+um
FALLACY: Timesharing causes a CPUs to be less el fFicient

12/05 /2018

Comp 41 - Fall 208

SOPHISTICATED SCHEDVLING

To improve eP«F-iciency Further, we can avoid schealuling processes
in Pr'olonged I/O wait:

. Processes can be in ACTIVE or WAITING ('‘sleeping’) states;
. Scheduler cycles among ACTIVE PROCESSES only;

- Active process moves to WAITING status when it tries to read
a character and butber is empty;

- Waiting processes each contain a code (eq in PCB) designating
what They are waiting for (eq keyboard N),

. Device interrupts (eg, on keyboard N) move any processes
waiting on that device to ACTIVE state.

UNIX kernel utilities:
. sleep(r'eason) - Puts CurProc to sleep. ‘Reason' is an
arbitrary binary value giving a condition for reactivation

o wakeup(reason) - Makes active any process in sleep(reasoh).

12./05 /2018 Comp 41 - Fall 208

V) WAS AN INTRODVCTION TO
COMPVUTER SCIENCE "SYSTEMS”

Applica+ion9

Technoloay

12./05 /2018 Comp 41 - Fall 208

SYstems: 201¥

Tablet computing Client computing
(Chrome, HTML 5), Cloud computing,
E-commerce, Android Arduino, IoT,
Wireless, Streaming Media, ..

Von Neumann Architectures, Muli-Core

Procedures, Objects, Processes
(hidden: pipelining, superscalar, SIMD, ..)

CMOs: 43 bilion transistors/chip
(2018 G-core/iz thread Kaby Loake

IOX transistors every 5 years
% performance/ week!

)

12./05 /2018 Comp 41 - "Fal 208

SYSTEMS 20287 To predet

the hews and
Hhink creaﬁvely

Natural language/speech interfaces,
irtual Assistants, Computer vision, 9y9+em9 that

learn’ rather than require programming
Pield—Pro?::arrrmble microbes, direct brai

Computer interraces, human augmentation . M‘;d the
Science is the y P
Faostest Von Neumann Architecture?2?

Chanﬁi”ﬂ 1024-way mulicore?
Field T " Neural Nets? o ctulf ic
; ow wil we program them? relatively eas
:i:irizallop " o predet.
’ /

CMOs:
450 billion transistors
10 GHz clock

12./05 /2018 Comp 41 - Fall 208

WHAT NEXT? SOME OPTIONS...

Comp 4l was

A

5

necessariy broad C 544
omp
W > DigH'aI Logic
ComP 4l
Compu+er' >
Organization J > Comp 520
Compiler's
Comp 40 Comp 550
Foundations of Algorithms & > Comp 530
Programming NS 2‘3;::::2
\ / Comp 455
Comp 410 Lt Models of
Languages
Data 2. Computation
Structures
Comp 57| I
.. but not very deep L Comp 555
_— Bio-AIgor'H-hme
Under

12/05 /2018

Comp 4 - P?all 2018

Should | take or
avoid these?

Comp 740
Compu+er' Arch
4 iImplementation

Comp 633
Paradllel & Distributed

Computing

Comp 744
VLS s\/9+em
Design

Comp 74
Elements of
H/W systems

Graduate
0F+ions

