FSMS AND TURING MACHINES

- Ways we know to compute
- Truth-tables = combinational logic
- State-transition tables $=$ sequential logic
- Enumerating FSMs
- An even more powerful model: a "Turing Machine"
(1912-1954)
- What does it mean to compute?
- What CAN'T be computed
- Universal TMs = programmable TM

Church (1903-1995) Turing's PhD Advisor

Let's play state Machine

Let's emulate the behavior specified by the state machine shown below when processing the following string from $L S B$ to MSB.

$$
39_{10}=\underset{{ }_{20}}{0.100111}{ }_{2}
$$

State				Input
	Next Output			
$\mathrm{T}=0$	S 0	1	S 1	0
$\mathrm{~T}=1$	S 1	1	S0	1
$\mathrm{~T}=2$	S 0	1	S 1	0
$\mathrm{~T}=3$	S 1	0	S 2	0
$\mathrm{~T}=4$	S 2	0	S 1	0
$\mathrm{~T}=5$	S 1	1	S 0	1
$\mathrm{~T}=6$	S 0	0	S0	1
$25 / 2022$		Comp 311 - Fall 2022		

It looks to me like this machine outputs a I whenever the bit sequence that it has seen thus far is a multiple of 3 . (Wow, and FSM can divide by 3!)

FSM PARTY GAMES

1. What can you say about the number of states?

States $\leq 2^{k}$
2. Same question:
 States $\leq m \times n$

2-TyPEs Of Processing elements
Combinational Logic:
Table look-up, ROM
Recall that there are precisely
2^{2}, i-input combinational functions.

A single ROM can store ' O ' of them
Finite State Machines:
ROM with State Memory
Thus far, we know of nothing more powerful than an FSM

Fundamentally, everything that we've learned so far can be done with a ROM and registers

fsMs as programmable machines

ROM-based FSM sketch: Given i s, and 0 , we need a ROM organized as:
$2^{\text {Hs }}$ words \times (o+s) bits

So how many possible i-input,
o-output,
FSMs with
s-state bits
exist?

All possible settings of the ROM's contents to: lor 0

How many state machines are there with
I-input, I-output, and I state bit?

$$
2^{(1+1) 4}=2^{8}=256
$$

An FSM's behavior is completely determined by its ROM contents. input outputs

Recall how we were able to "enumerate" or "name" every 2 -input gate?
Can we do the same for FSMs?

FSM ENUMERATION

 GOAL: List all possible FSMs in some canonical order.- INFINITE list, but
- Every FSM has an entry in and an associated index.

$0 \ldots . .00$	$0 \ldots .00$	10110	011
$0 \ldots . .01$			

SOME FAVORITES

FSM $_{837}$
FSM $_{1077}$
FSM $_{1537}$
FSM $_{89143}$
FSM ${ }_{22698469884}$
FSM
23892749274
FSM $_{78436378389}$
FSM $_{78436378390}$
modulo 3 state machine
4-bit counter
Combination lock
Cheap digital watch
RISC-V processor
ARM7 processor
Intel I-7 processor (Skylake)
Intel I-7 processor (Kaby lake)

CAN FSMS COMPUTE EVERY BINARY FUNCTION? IIII

 Nope!There exist many simple problems that cannot be computed by FSMs.
For instance:

Checking for balanced parentheses

$(()(()()))$ - Okay
(()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on input. Must "COUNT" unmatched LEFT parens.

But, an FSM can only keep track of a "bounded" number of events. (Bounded by its number of states)
Is there another form of logic that can solve this problem?

UNBOUNDED-SPACE COMPUTATION
DURING 1920s \& 1930s, much of the "science" part of computer science was being developed (long before
$0|1| 1|0| 0|1| 1|1| 0|1| 0|1| 1|1| 0|1| 1 \mid 0\}$ actual electronic computers existed). Many different
"Models of Computation" were proposed, and the classes of "functions" that each could compute were analyzed.
One of these models was the 'TURING MACHINE", named after Alan Turing (1912-1954).

A Turing Machine is just an FSM which receives its inputs and writes outputs onto an "infinite tape". This simple addition overcomes the FSM's limitation that it can only keep track of a "bounded number of events".

a turing Machine Example

Turing Machine Specification

- Infinite tape
- Discrete symbol positions
- Finite alphabet - say $\{0,1\}$
- Control FSM Nputs:

Current symbol on tape OUTPUTS:
write O/I
move tape Left or Right - Initial Starting State $\{50\}$

- Halt state $\{\mathrm{Halt}\}$

A Turing machine, like an FSM, can be specified via a state-transition table.
The following Turing Machine implements a unary (base I) counter.

Current State	Tape Input	Write Tape	Move	Next State
S0	1	1	R	S0
S0	0	1	L	S1
S1	1	1	L	S1
S1	0	0	R	Halt

turing Machine Tapes as Integers

Canonical names for bounded tape configurations:

Look, it's just FSM i operating on tape j

Note: The FSM part of a Turing Machine is just one of the FSMs in our enumeration. The tape can also be represented as an integer, but this is trickier. It is natural to represent it as a binary fraction, with a binary point just to the left of the starting position. If the binary number is rational, we can alternate bits from each side of the binary point until all that is left is zeros, then we have an integer.

TMS as Integer functions
Turing Machine T_{i} operating on Tape x, where $x=. . . ~_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$

$$
\begin{aligned}
& y=T_{i}[x] \\
& x: \text { input tape configuration } \\
& y \text { : output tape when } T M \text { halts }
\end{aligned}
$$

alternative models of computation

Turing Machines [Turing]
Hardware head

Lambda calculus [Church, Curry, Rosser...]

Church (1903-1995)
Turing's PhD Advisor

Recursive Functions [Kleene]

$$
F(0, x)=x
$$

$$
F(y, 0)=y
$$

$$
F(y, x)=x+y+F(y-1, x-1)
$$

(define (fact n)
(... (fact (- n 1)) ...)

Kleene (1909-1994)
Production Systems [Post, Markov]
Language

THE IT COMPuter Industry shake

Here's a TM that computes SQUARE ROOT!

AND THE BATTLES RAGED

Here's a Lambda Expression that does the same thing...

$$
(\lambda(x) \quad \ldots . .)
$$

... and here's one that computes the $n^{\text {th }}$ root for ANY n !
($\lambda(\mathrm{x} \mathrm{n}) \ldots .$.

A fundamental result

Turing's amazing proof. Each model is capable of computing exactly the same set of integer functions! None is more powerful than the others.
Proof Technique: Constructions that translate between models
BIG IDEA: Computability, independent of

computation scheme chosen

Every discrete function computable
by ANY realizable machine is computable by some Turing machine.

This means that we know of no mechanisms (including computers) that are more "powerful" than a Turing Machine, in terms of the functions they can compute.

Comp 311-Fall 2022

COMPUTABLE FUNCTIONS

$f(x)$ computable $\Leftrightarrow=>$ for some k, all x :

$$
f(x)=T_{k}[x] \equiv f_{k}(x)
$$

Representation tricks: to compute $f_{k}(x, y)$ (2 inputs) $\langle x, y\rangle$ I integer whose even bits come from x, and whose odd bits come from y; whence

$$
f_{K}(x, y) \equiv T_{K}[\langle x, y\rangle]
$$

$f_{12345}(x, y)=x^{*} y$
$f_{23456}(x)=1$ iff x is prime, else 0

TMS, LIKE PROGRAMS, CAN MISBEHAVE

It is possible that a given Turing Machine may not produce a result for a given input tape. And it may do so by entering an infinite loop!
Consider the given TM.
It scans a tape looking for the first non-zero

Current State	Tape Input	Write Tape	Move	Next State
SO	1	1	L	Halt
SO	0	0	R	SO

What does it do when given a tape that has no I's to its left?

We say this TM does not

$$
\begin{gathered}
\operatorname{tape}_{256}=\ldots \text { 이이이이이이이1|잉 } \cdots \\
\operatorname{tape}_{8}=\ldots \text { 이1|이이이이이이잉 } \cdots
\end{gathered}
$$ halt for that input!

ENUMERATION OF COMPUTABLE FUNCTIONS

Conceptual table of TM behaviors...
VERTICAL AXIS: Enumeration of TMs.
HORIZONTAL AXIS: Enumeration of input tapes.
(j, k) entry = result of $T M_{k}[j]$-- integer, or * if it never halts.
Turing Machine Tapes

Turing Machine FSMs		$\mathrm{f}_{\mathrm{i}}(0)$	$\mathrm{f}_{\mathrm{i}}(1)$	$f_{i}(2)$...	$f_{i}(\mathrm{j})$	\ldots
	f_{0}	$3{ }^{3} 1$	X 31	X*0	\ldots	...	
	f_{1}	421	*0	866	
	
\checkmark	f_{k}	$f_{k}(\mathrm{j})$	
	...						

Every computable function is in this table, since everything that we know how to compute can be computed by a TM.

Do there exist well-specified integer functions that a TM can't compute?

The Halting Problem: Given j, k : Does $T M_{k}$ Halt with input j ?

the halting problem

The Halting Function: $T_{H}[k, j]=1$ iff $\mathrm{TM}_{k}[j]$ halts, else 0 Can a Turing machine compute this function?

Suppose, for a moment, T_{H} exists:

Then we can build a $T_{\text {Nasty }}$:

LOOP if $\mathrm{T}_{k}[k]=1$ (halts)
HALT if $T_{k}[k]=0$ (loops)

What DOES $^{T_{\text {NASTY }}}$ [NASTY] DD?
Answer:

$$
\begin{aligned}
& T_{\text {Nasty }}[\text { Nasty }] \text { loops if } T_{\text {Nasty }}[\text { Nasty }] \text { halts } \\
& T_{\text {Nasty }}[\text { Nasty }] \text { halts if } T_{\text {Nasty }}[\text { Nasty }] \text { loops }
\end{aligned}
$$

That's a contradiction.
Thus, T_{H} is not computable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines simply cannot answer. Since, we know of no better model of computation than a Turing machine, this implies that there are some well-specified problems that defy computation.

LIMITS OF TURING MACHINES

A Turing machine is formal abstraction that addresses

- Fundamental Limits of Computability -

What is means to compute.
The existence of uncomputable functions.

- We know of no machine more powerful than a Turing machine in terms of the functions that it can compute.

But they ignore

- Practical coding of programs
- Performance
- Implementability
- Programmability
these latter issues are the primary focus of contemporary computer science (Remainder of Comp 4॥)
$10 / 25 / 2022$
Comp 311 - Fall 2022

COMPutability vs. Programmability

Factorization

Recall Church's thesis:
"Any discrete function computable by ANY realizable machine is computable by some Turing Machine"
We've defined what it means to COMPUTE (whatever a TM can compute), but, a Turing machine is nothing more that an FSM that receives inputs from, and outputs onto, an infinite tape.
so far, we've been designing a new FSM for each new Turing machine that we encounter.

Wouldn't it be nice if we could design a more general-purpose Turing machine?

Programs as Data

What if we encoded the description of the FSM on our tape, and then wrote a general purpose FSM to read the tape and EMULATE the behavior of the encoded machine? We could just store the state-transition table for our TM on the tape and then design a new TM that makes reference to it as often as it likes. It seems possible that such a machine could be built.
"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with a tape on the beginning of which is written the S.D ["standard description" of an action table] of some computing machine M, then U will compute the same sequence as $M .{ }^{\prime \prime}$ - Turing 1936 (Proc of the London Mathematical Society, Ser. 2, Vol. 42)

Fundamental result: Universality
Define "Universal Function": $u(x, y)=T_{x}(y)$ for every x, y... surprise! $u(x, y)$ is COMPUTABLE, hence $u(x, y)=T_{u}(\langle x, y\rangle)$ for some u.

INFNITELY many UTMs ..
Universal Turing Machine (uTM):

PARADIGM for General-Purpose Computer!

Any one of them can evaluate any computable function by simulating/ emulating/interpreting the actions of Turing machine given to it as an input.

UNIVERSALITY:
Basic requirement for a general purpose computer

DEMONSTRATING UNIVERSALITY

Suppose you've designed Turing Machine T_{k} and want to show that its universal. APPROACH:

1. Find some known universal machine, say T_{u}
2. Devise a program, P, to simulate T_{u} on T_{k} : $T_{k}[\langle P, x\rangle]=T_{u}[x]$ for all x
3. Since $T_{u}[\langle y, z\rangle]=T_{y}[z]$, it follows that, for all y and z

$$
T_{K}[\langle P,\langle y, z\rangle\rangle]=T_{U}[\langle y, z\rangle]=T_{y}[z]
$$

CONCLUSION: Armed with program P, machine T_{K} can mimic the behavior of an arbitrary machine T_{y} operating on an arbitrary input tape z.
HENCE T_{k} can compute any function that can be computed by any Turing Machine.

Next Time

Enough theory already, let's build something!

