FOMS AND TURING MACHINES

° V\/ays we know to compute

0 Truth-tables = combinational Ioaic

0 State-transition tables = sequentiol Ioaic

i urch (1903-1995)
o Eﬂumerd"’“’lﬂ FSMs Turing's PhD Advisor

e An even more PowerPul model:

u . Sl Alan Turing
a Tur'll’\g Machine (1912-1954)

e What does it mean to compute?

e What CANT be comPquecl

_ Kleene

® Universal TMs = programmable TM (1909-1994)
P 9 Post

(1897-1954)

0/25 /2022 Comp 3l - Fall 2022



LET'S PLAY STATE MACHINE

Le¥s emulate the behavior speci-Pied by the state machine
shown below when processing the Pollowing string from

LSB to MSB. 1 0
BONONGE
39, = 0100111,
State Input |Next Output T} locks 1o me like this
T=0 S0 1 [S1 0 e e
T=1 S1 1 |SO0 1 that i has seen thus far
T=2 SO 1 S1 0 is a muHiple of 3.
T=3 $1 0 |S2 O (Wow, and FSM can
T=4 S2 0 (S1 O divide by 3))
T=5 $S1 1 1S0 1
T=6 SO 0O |SO 1
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F5M PARTY GAMES

. What can you say about —— ROM
e humber of states? —
k 1 k

States < 2¥ kﬁ

X
2ol Fom, | 2| Fsm,

m-states n-states

2. Same quesﬁon-.

States S m x n
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2-TYPES OF PROCESSING ELEMENTS

Combinational Loaic: i o
Fundamentally,

Addr
Table look-up, ROM ﬁL’ Data ﬁL’
everything

Recall that there are precisely I +ha:d wev;
earned se tar

|
22, iHhput combinational functions. can be done

A single ROM can store ‘o of them a‘:fte;; soxs

/
Finite State Machines: i o r

ROM with State Memory — —

Addr
S Data

Thus Far, we know of hothing ‘74" ]
more Power'FuI Hhan an FSM
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FoMS AS PROGRAMMABLE MACHINES
ROM-based FSM sketch:

An FSM's behavior is com Ie%él -
Given i, s, and o, we heed a ROM © compietely

: determined by its ROM contents.
organized as: inputby outputs
2"* words x (o+s) bits i sy |Sw: ©
_ 0..00 | 0.00 | 10110 | 011
So how many possible 001
i’hP‘J+: .
i
o-ou+|9u+,_ /) 2
FSMs with / —f—
s-state bits
eXig+? The number of "bis” S
in +he ROM //’
All possible i+s A\
sethings of the (o+s)2
ROM"sscon'l'en'l'S {2 \/_/\r-/o
forler @ (some may be - I \ﬁL»
equivalent) ‘ .
9" How many state machines are fhere with Recadll how we were dble to ‘enumerate
} I-input, l~output, and | state bi? or ‘name’ every Z—inf..ﬂ- gate?
2(1+1)4 = 28 = 256 Can we do the same for FsMs?
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These are the FSMs with | input

FSM ENVMERATION T

GOAL.: List all Possible FsMs in

some cahohical order.
- INFINITE list, but

. Every FSM has an en+r'y N
and an associoted index.

input outputs
iS
i sy | © SNt
0...00 0...00 10110 | 011
0...01
I0/25 /2022

i s o FSM#  Truth Table ¥
111 1 oooooooo'figi
111 2 00000001

- 28
111 256  11111111] | FSMs
222 257 000000..000000

2 2 2 258 000000..000001 |264

18,446,744,073,709,551 ,87%._

333

000000..000000
3.9402 x 1015,
444 \ 000000 000000

Every possible FSM can be associated with a unique number.
This requires a few wasteful simpliFications. First, given an
iHnput, s-state-bit, and o-output FSM, we'll replace it with its
equivalent n-input, nstate-bit and n-output FSM, where n is the
greatest of | 5, and o. We can always ignore the extra
input-bits, and set the exira output bits to 0. This dllows us to
discuss the ith FsM
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SOME FAVORITES

FSM
FSM
FSM
FSM
FSM22698469884
FSM

FSM

FS M78436378390

837
1077
1537
89143

23892749274
78436378389

I0/25/2022

modulo 3 state machine

4-bit counter

Combination lock

Cheap digital watch

RISC-V processor

ARMY7 processor

Intel I-7 processor (Skylake)
Intel I-7 processor (Kaby lake)

1"”

(!
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CAN FSMS COMPVUTE EVERY BINARY FUNCTION?
NoPe!

There exist many simple problems that cannot be compu+ed Iay FSMs.
For instance:

Checking For baanced parentheses

(OO0 - okay . /i%"ﬁgi’%;;f%?f’:a
(()())) - NO aood! P Y9

series of inputs, starting
from a known initial state.

PROBLEM: Requires ARBITRARILY many states, oleper\olinﬂ on input.
Must "'COUNT" unmatched LEFT parens.

But, an FSM can only keep track oF a 'bounded' humber of events.
(Bounded by its number oE states)

Is there ancther form of logic that can solve this problem?
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VNBOVNDED-SPACE COMPUTATION |
DURING 19205 & 1930s, much of the =~
‘science’ part of computer science
was being developed (long before
?0|1|1|0|0|1|1|1|0|1|0|1|1|1|0|1|1|08 actual electronic computrers

existed). Many diFferent
‘Models of Computation'
08 were proposed, and the classes of
TN ‘*Functions" that each could compute
o were analyzed.
il One of these models was the

‘TURING MACHINE",
hamed after Alan Tur'ina (912495 4).

A Turing Machine is just an FSM which receives its
. inputs and writes outputs onto an ‘inkinite tape’. This
Alan Turing civple addition overcomes the FSM's limitation that it can
only keep track of a "bounded number of events'
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A TURING MACHINE EXAMPLE

- In+inite +aPe
- Discrete eymlaol positions
- Finite alphabet - say {O, 1}
- Control FsM
INPUT S-
Current Gymbol on tape
OUTPUTS:
write O/
move tape Lelt or Right
- Initial Starting State {s0
. Halt state {Holt)

0/25 /2022 Comp 3l - Fall 2022

Turnlﬁ Machine SPeciPica+im A Turing machine, like an FSM, can be

speciﬁied via a state-transition table.
The Po\lowina Turing Moachine implements
a unary (base 1) counter

Current | Tape [[Write Next
State |[Input| Tape | Move | State

SO 1 1 R SO

SO 0] 1 L S1
S1 1 1 L S1
S1 0 0] R | Halt

.{olololo]1]1]1]1]1]0 |-

toafet




TURING MACHINE TAPES AS INTEGERS

Canonhical names for bounded tape conPigumﬁons:

b, b, b, b, b, b, b, b, b,

olo|1]|ojo|1|1]0|0]| |

ook, it’s just FSM i
operating on tape j

Note: The FSM port ofF a Turing Machine is just one of the
FSMs in our enumeration. The tape can dso be represen’red
as an in+eger, but this is trickier. it is natural to represent it
as a binary Fraction with a binary point just to the left+ of
the starting position. I the binary number is rational, we can
aternate bits From each side of the binary point until all
that is left is zeros, then we have an integer.

I0/25 /2022 Comp 3l - Fall 2022 I



TMs AS INTEGER FUNCTIONS

Tur'ir\a Machine T operaﬁn@ on Tape X,
where x = ...I08|a719 b b bbbb

G 5 4 3 21 O

y = T.[x]

X: inPu+ JraPe cor\lliaur'aﬁon
y: ou+Pu+ +aPe wherl TM halts

I wonder if a T can compute
— EVERY inteqer function..
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ALTERNATIVE MODELS 6F COMPUTATION

Turing Machines [Turing]  Hardware Recursive Functions [Kleene

head
F(0.X) =
ﬂ_O_LO_I_‘LLO_%J_u_I_O_LO_L/ (0:x) = x

F(y,0) =y
F(y,x) =x+y+ F(y-1,x-1)
FSM;

(define (fact n)
(... (fact (- n 1)) ...)

Kleene (1909-1994)

Tﬁeory
head

Turing Production Systems [Post, Markov]

Lambda calculus [Church, Curry, Rosser...] La;'\g:?e

(¢ ﬁ& Math $, - []

AX.AY. XX $ -~ [$]

:117’ head Y. XXY 3 &%
‘?' (lambda (x) (lambda (y) (x (x y)))) $i[]$j - $i$j

Post
(1897-1954)

Church (1903-1995)
Turing's PhD Advisor
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—~—
THE )7 ComMPuTER TNDUSTRY S‘qusourll,Tl_

Here's a TM that
computes SQUARE ROOT!

\

O N G R R N G

il

FSM

I0/25 /2022 Comp 3l - Fall 2022 14



AND THE BATTLES RAGED

Here's a Lambda Expression
that does the same thing...

. and here's one that computes
the n™ root for ANY nl

(AM(x n) ..... )
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A FUNDAMENTAL RESULT

Turing's amazing Pr'oo-f—. Each model is capable of computing
exacty the same set of integer Functions! None is more
PowerPul than the others.

Proof Technique-. Constructions that
translate between
models

This means that we know of

Bl IDEA: COFHPLH‘O\UI\H‘Y, independenJr O‘p no mechanisms (including

computation scheme chosen C?’:&‘;‘ﬁ) ;{:3: z"ﬁ.u':i‘:;
Machine, in terms of the

functions they can compute.

/ 5
2

Church's Thesis:

Every discrete function computable
ANY redlizable machine is
compu+a|9|e Iay some Turing machine.

10/25 /2022 k Comp 3 - Fall 2022 ‘ &



COMPUTABLE FUNCTIONS [:imi oo bt fucionuil e

be the confents of the tape when the M hals.

o /
f(x) computable <=> for some k, all x: j}
f(x) = T [x] = f(x)

Repr‘eserﬁaﬁon tricks: to comPque Pk(x,y) (2 ir\Pquc;)
<xy> = integer whose even bits come From x,
aond whose odd bits come from y; whence

f(x, y) = T [<x, y>]

flosas(X.Y) = x "y
foa5(X) = 1 iff x is prime, else O

I0/25/2022 Comp 3l - Fall 2022 7



TMSs, LIKE PROGRAMS, CAN MISBEHAVE

It is Poesilole that a given Turinﬁ Machine may not

Pr'ooluce a result For a given input tape. And it may
do so on entering on infFinite Ioop!

Consider the given TM

I+ scans a +aPe Iooking
for the First non-zero
cell to the r'iath.

What does it do when
given a +aPe that has
no I's to its left?

We say this TM does not
hat for that inPqu!

I0/25/2022

Current | Tape | Write Next
State | Input| Tape | Move | State
SO 1 1 L | Halt
SO 0 0] R SO
tape,, = -1 0/0/0|0|0|0|0|1]0]O |---
tape, = ...| 0|1]|0]0JO]O]O]O|O|O |-

Comp 3l - Fall 2022
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ENVMERATION OF COMPUTABLE FUNCTIONS

Conce

ptual table of T™ behaviors..

VERTICAL AXIS: Enumeration of TMs.
HORIZONTAL AXIS: Enumeration of input tapes.

(j k) entry = result ofF TMK[J'] - integer, or * it it hever halts.

Turina Machine Tapes

f(0) f@1)  f(2) f.(j)
g | o | X1 X1 X0
Machine
echie ¢ | %1 X0 Mt
\ f, f.0)

Every computable
function is in this
fable, since everything
that we know how o
compute can be
computed by a TM.

Do there exist
well-specified integer
functions that a ™M
can't conrfu’re?

ho

2

The HaH'ina Problem: Given | k: Does TM,_ Halt with input |2

I0/25/2022
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THE HALTING PROBLEM

The Hal+ina Function: T [k, j]1 = 1iff TM,[j] halts, else 0
Can a Turing machine compute this function?

Suppose, For a moment, T, exists:

k
Liff T HALTS | —
O otherwise H "~
J
Then we can bLIIH a TNas : :’l :ﬂyara: Tﬂ;n a
+y -l-hoseon'l'heP ’

= diagenal of the

e
LOOP ~\1 T /h provifs sl
) k
HALT A/oC H |

LOOP if T.[K] = 1 (halts)
Thasy[Kl  HALT if TJk] = 0 (loops)

0/25 /2022 Comp 3l - Fall 2022

I T, is
compu+a|9|e
then so is

T sty

/
U4




WhaT boes T, [Nasty] bo?

Anhswer:
TNangy[Nac;er] loops il T ot [Na9+y] halts
TNangy[Naery] halts i TNGQW Nas+y] loops

That's a contradiction.
Thus, T, is hot comPqualoIe on a Turina Machine!

Net Result: There are some integer Ffunctions +hat Turing Mochines
simply cannot answer. Since, we know of no better model of
comPquaJrion than a Turinﬂ machine, this implies that there are some
well-speciﬁed problems that dePy computation.

I0/25 /2022 Comp 3l - Fall 2022 2]



LIMITS OF TVRING MACHINES

A Turing machine is Lormal abstraction that addresses
Fundamental Limits of Computability -
What is means to compute.
The existence ofF uncomPqualole Functions.
We know of no machine more powertul than a Turing mochine
in terms of the functions that it can comPu+e.

But +hey ianor‘e
. Practical codina oF programs
. Performance
- Implemer\Jrabilier
. Proarammalailﬁy

- these latter issues are the primary Focus ofF contemporary
computer science (Remainder of Comp 41

I0/25 /2022 Comp 3l - Fall 2022 22



COMPUTABILITY VS. PROGRAMMABILITY

SMoToT1ToToT1T1ToToT f

FSM

Factorization

SoloT1ToToT1T1ToToT S
SoloT1ToToT1T1ToToT S
FSM s
FSM
Multiplication i i
P Is it prime?
SoTloT1ToToT1T1ToToT f
P 'J/
FSM e
Sorting %

I0/25/2022

Recall Church's thesis:

"Any discrete Function computable by
ANY readlizable machine is comPquable
Iay some Turing Machine'

We've defined what it means to COMPUTE
(Whatever a TM can compute), but, a
Turing machine is no’rhinﬂ more that an FSM
that receives inputs from and outputs
onto, an inkinite tape.

sSo far, we've been dec;ianing a hew FSM
Lor each new Turing machine that we
encounter.

Wouldn't it be nice if we could desiﬁn a
mor-e 3eneral—|9urpoc;e Tur'ina machine<

Comp 3l - Fall 2022 23



PROGRAMS AS DATA

What i+ we encoded the description ofF the FSM on our tape, and —

then wrote a general purpose FSM to read the tape and EMULATE

the behavior of the encoded machine? We could just store the
state-transition table £or our TM on the tape and then deeign a hew
TM that makes reference to it as often as it likes. i seems
possible that such a machine could be built.

"T# is possible to invent a single machine \g\\\\‘ & (.
which can be used to compute any —= —
computable sequence. If this machine U is - T
supplied with a tape on the beginning of

which is written the SD ["s+::3c:rd
description” of an action table] of some
computing machine M, then U will compute
the same sequence as M.

- Turing 1936 (Proc of the Londen
Mathematical Seciety, Ser. 2, Vel. 42)

0/25 /2022 Comp 3l - Fall 2022
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FUNDAMENTAL RESULT: VNIVERSALITY

Define ‘Universa Function“ u(x,y) = Tx( y) For every x vy ..
Surprise! u(x,y) IS COMPUTABLE,
hence u(x,y) = Tu( <x,y>) for some U.

. INFINITELY many UTMs ..
Any one of them can

Universal Turing Machine (UTM): evauate any computable
function by simulating/
TU [< Y, Z> ] = Ty[Z] emulating/interpreting

the actions of Tur"lnﬂ

L L K Tape = "data" machine 3iven to it

input.
TM = "program" a2 an Inpd

"interpreter" UNIVERSALITY:

PARADIGM For General-Purpose Computer! Basic requirement
\ for a general purpose

compu+er'
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DEMONSTRATING VNIVERSALITY

Suppose you've desianed Turing Machine T, and want to show that its universal.

p —

APPROACH:
L Find some known universal machine, say T,

2. Devise a progrom, P, to simulate T, on T Complete
T L<Px>] = T [X] for all x

3. Sihce Tu[<y,z>] = Ty[z], it Follows that, For all y a

TK [<P,<y,z>>] = TU[<Y'2>] = Ty[z]

CONCLUSION: Armed with program P, machine T, can mimic the
behavior of an ar'loiJrr'ar'y machine T, oPer'aJrir\.a oh an ar'loiJrr'ar'y ir\Pu+
+ape v

HENCE T, con comPque any Function that can be comPqued by any
Turinﬁ Machine.
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NEXT TIME

Enough theory already, let's build someJrhina!

Build SOMETHING

TIALSIN]

KEEP
CALM
AND

BUILD
SOMETHING
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