
10/6/2022 Comp 311 - Fall 2022

A problem with my gate Names

In the gate enumeration slide from two lectures ago I
unfortunately gave bad names to two gates

1

A
>=
B

B
>=
A

10/6/2022 Comp 311 - Fall 2022

An Arithmetic Logic UNIT

2

01011
+00101
10000

● Shifts of shifts
● Boolean logic
● An ALU

10/6/2022 Comp 311 - Fall 2022

Shifting Logic

3

Shifting is a common operation that is applied to
groups of bits. Shifting is used for alignment,
selecting parts of a word, as well as for
arithmetic operations.

X << 1 is approx the same as 2*X
X >> 1 can be the same as X/2

For example:
 X = 000101002= 2010

Left Shift:
 (X << 1) = 001010002 = 4010

Right Shift:
 (X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
 (-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

10/6/2022 Comp 311 - Fall 2022

More Shifting

4

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT3

Using the same
basic idea we can
build left shifters
of arbitrary shift
amounts using
muxes.

Each shift amount
requires its own
set of muxes.

Hum, maybe
we could do
something

more clever.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0
“0”
LFT2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

10/6/2022 Comp 311 - Fall 2022

Barrel Shifting

5

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0
“0”

LFT2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

T7

T6

T5

T4

T3

T2

T1

T0“0”
LFT4

And, if we add one more
“shift-left-4” shifter we
can do any shift up to 7
bits!

If we connect our
“shift-left-two” shifter to
the output of our
“shift-left-one” we can
shift by 0, 1, 2, or 3 bits.

So, let’s put a box around it
and call it a new functional
block.

Left
Barrel
Shifter

A

Y

S

N-bits

N-bits

log2(N)
bits

10/6/2022 Comp 311 - Fall 2022

Adding a Twist

It would be straightforward to construct a “right barrel shifter” unit.
However, a simple trick that enables a “left barrel shifter” to do both.

6

A7-

0

A0 A7 A1 A6 A2 A5 A3 A4 A4 A3 A5 A2 A6 A1 A7 A0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Left Barrel ShifterSHFT

Y
Y0 Y7 Y1 Y6 Y2 Y5 Y3 Y4 Y4 Y3 Y5 Y2 Y6 Y1 Y7 Y0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

10/6/2022 Comp 311 - Fall 2022

One LAST Detail

7

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

LFT1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

LFT2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

T7

T6

T5

T4

T3

T2

T1

T0

LFT4

And, if we add one more
“shift-left-4” shifter we
can do any shift up to 7
bits!

If we connect our
“shift-left-two” shifter to
the output of our
“shift-left-one” we can
shift by 0, 1, 2, or 3 bits.

So, let’s put a box around it
and call it a new functional
block.

Left/Right
Barrel
Shifter

A

Y

S

N-bits

N-bits

log2(N)
bits

ASR ASR

10/6/2022 Comp 311 - Fall 2022

Bitwise Logical Operations

We need to perform logical operations, or Booleans, on
groups of bits. Which ones?

8

ANDing is used for “masking” off groups of bits.
 ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ORing is used for “setting” groups of bits.
 ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

EORing is used for “complementing” groups of bits.
 ex. 10101110 ^ 00001111 = 10100001 (complement last 4 bits)

10/6/2022 Comp 311 - Fall 2022

Boolean Unit (The obvious way)

It is simple to build up a Boolean unit using primitive
gates and a mux to select the function.

Since there is no interconnection
between bits, this unit can be simply
replicated at each position. The cost
is about 6 gates per bit. One for
each primitive function, and
approx 3 for the 4-input mux.

This is a straightforward, but not elegant design.

9

Ai Bi

Qi

Bool
00 01 10 11

This logic
block is
repeated for
each bit (i.e.
32 times)

10/6/2022 Comp 311 - Fall 2022

Cooler Bools

We can better leverage a MUX’s capabilities in our Boolean unit design,
by connecting the bits to the select lines.

Why is this better?

While it might take a little
logic to decode the truth
table inputs, you only have
to do it once, independent
of the number of bits.

BTW, it also handles the
MOV and MVN cases.

10

Qi

Ai, Bi

00 01 10 11

'0'
OR

XOR
AND
OR

OR
XOR

I should pay
more

attention to
those muxes

BooleanOpcode

A B

Q

Which ever way
makes the most
sense to you. Let’s
get a box around it!

10/6/2022 Comp 311 - Fall 2022

An ALU, at last
We give the “Math Center” of a computer a special name--
the Arithmetic Logic Unit (ALU). For us, it just a big box
of gates! Well need to decode a few control lines, Sub,
Math, Shift, b00,b01,b10,b11 from the instruction.

11

That’s a
lot of
stuff

C,V,N,Z

A B

R

 Bidirectional
Barrel Shifter Boolean

ADD
SUB

Sub

Math/Shift

1 0
…

ASR SHFT

b00,b01,b10,b114

1 0
Math

Shift

