ARITHMETIC CIRCUITS

Didn't I learn how to do addition in second grade? UNC courses aren't what they used to be...

Finally; time to
build some serious functional We'll need
a lot of
boxes

- How to add and subtract using combinational logic
- Setting flags
- Adding faster

REVIEW: BINARY REPRESENTATIONS

- Unsigned numbers, each increasingly significant bit has a weight of the next larger power of 2
- signed 2's complement representation the most significant bit is a negative power of 2 .
unsigned: $\quad v=\sum_{i=0}^{n-1} 2^{i} b_{i} \quad$ signed: $v=-2^{n-1} b_{n-1}+\sum_{i=0}^{n-2} 2^{i} b_{i}$

- Why?
- They are compatible. The same logic can be used for both - Only "adders" are needed for both addition and subtraction

BINARY ADDITIION

Here's an example of binary addition as one might do it by "hand":

	$\text { A: } \begin{aligned} & 1101 \\ & 1101 \end{aligned}$
Adding two N -bit numbers produces	$B:+0101$
an ($\mathrm{N}+1$)-bit result	10010

Let's start by building a block to add one column: This functional block is called a "Full-adder"
 Then we can cascade them to add two numbers of any size...

DESIGN OF A "FULL ADDER"

1) Start with a truth table:
2) Write down equations for the "I" outputs

$$
\begin{gathered}
C O=(!C I \& A \& B) \mid(C I \&!A \& B) \\
\quad|(C I \& A \&!B)|(C I \& A \& B) \\
S=(!C I \&!A \& B) \mid(C C I \& A \& B) \\
|(C I \&!A \& B)|(C I \& A \& B)
\end{gathered}
$$

3) Simplifying a bit

$$
\begin{aligned}
& C O=(C I \&(A \mid B)) \mid(A \& B) \\
& S=C I^{\wedge} A^{\wedge} B \\
& C O=(C I \&(A \wedge B)) \mid(A \& B) \\
& S=C \wedge^{\wedge}\left(A^{\wedge} B\right)
\end{aligned}
$$

C_{i}	A	B	C_{0}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

AS A LOGIC DIAGRAM

- Our equations:
$C O=\left(C I \&\left(A^{\wedge} B\right)\right) \mid(A \& B)$ $S=C l^{\wedge}\left(A^{\wedge} B\right)$
- A little tricky, but finally Only 5 gates/bit

AN ASIDE: WHY FULL ADDER?

suppose you don't want/need a carry-in?

- Half-adder equations:

$$
\begin{aligned}
C O & =A \& B \\
S & =A^{\wedge} B
\end{aligned}
$$

SUBTRACTION: $A-B=A+(-B)$

- Recall the trick was to "complement and add I"
- How to complement?
$\sim=$ bitwise complement

- So now a unit that can either add or subtract

CONDITION FLAGS

Besides the sum, one often wants four other bits of information from an arithmetic unit, the condition flags.
z (zero): result is $=0$
N (negative): result is < 0
C (carry): indicates the most significant bit produced a carry, egg., " $1+(-1)$ "
\checkmark (overflow): indicates an unexpected change in sign ecg." " $\left.2^{30}-1\right)+1^{\prime \prime}$

$$
\mathrm{CO}_{31} \wedge \mathrm{CO}_{30}
$$

How condition flags are used in conditional execution

Signed comparison:
H $N \wedge V$
eq 2
ne ! 2
ge ! $(N \wedge V)$

Unsigned comparison: Mu lC (same as cc) gen C (same as cs)

HOW FAST IS AN ADD?

Determined by $T_{p d}$ of the FA chain

Worse-case path: carry propagation from LSB to MSB, e.g., when adding to to I.

$$
\mathrm{t}_{\mathrm{PD}}=\left(\mathrm{t}_{\mathrm{PD}, \mathrm{XOR}}+\mathrm{t}_{\mathrm{PD}, \mathrm{AND}}+\mathrm{t}_{\mathrm{PD}, \mathrm{OR}}\right)+(\mathrm{N}-2)^{*}\left(\mathrm{t}_{\mathrm{PD}, \mathrm{OR}}+\mathrm{t}_{\mathrm{PD}, \mathrm{AND}}\right)+\mathrm{t}_{\mathrm{PD}, \mathrm{XOR}} \approx \Theta(\mathrm{~N})
$$

WE CAN ADD "MUCH" FASTER

Using more gates we can speed up adding considerably if we add 2 "free" extra outputs from our adder

C_{i}	A	B	C_{0}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

CARRY-SKIP ADDERS

If all full adders in
a contiguous block have their Propagate true, then the incoming carry-in can "skip" over the entire block!

Requires extra AND gates and a Mux, but reduces the worst
 case add-time

FULL CARRY-LOOKAHEAD

The fastest adders use full carry look-ahead.

- Given the Ps and Gs of a block, one can simultaneously compute the carry-ins for all bits as well as the block using the 3-level SOP
 methods discussed last lecture.
- Results in an $\Theta\left(\log _{2}(N)\right), T_{p d}$, like an N-input AND gate, using $\approx 2 x$ more gates

next time

We get shifty, no, Bool!

