ENUMERATING AND COMPOSING GATES

KNOCKIN'ON HEAVEN'S DOOR

- Combinational logic as/is truth tables
- Composing gates
- What gates do we have?
- What gates do we need?
- Making gates from others
- A systematic approach for implementing combinational logic

Midterm results next Tuesday PS\#3 is posted

NOW CAN WE DESIGN LARGER SYSTEMS

We need to start somewhere usually with a functional specification

If you are like most pragmatists you'd rather be given a table or formula than solve a puzzle to understand a function. The fact is, every combinational function can be expressed as a table.
"Truth tables" are a concise description of the combinational system's function, where an output is specified for *every* input combination. Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

TRUTH TABLES TO GATES?

We want to build a computer! So far we know how to
 build a few CMOS gates using MOSFET transistors (SAND, NOR, INVERTER)

But we are missing AND, OR, and XOR

What gates can we build using CMOS?

WHAT GATES CAN WE BUILD?

Recall, we need to design our gates using a pull-up network of P-FETs and a pull-down network of N-FETs.

How many possible 2-input gates are there?
KEY IDEA: As many as there are 2 -input truth tables.
2 -inputs $\rightarrow 2^{2}=4$ rows, each with an output
4-outputs $\rightarrow 2^{4}=16$ possible functions
9/29/2022
Comp 311 - Fall 2022

all the cates

There are only 16 possible 2-input gates... Let's examine all of them. Some we already know, others are just silly.

Do we really need all of these gates?
Nope! Once we realize that we can describe all of them using just AND, OR, and NOT

How many of these gates can be implemented using a single CMOS gate?

N-FETs can only
pull the ouput to " 0 ", and only if one or more of their inputs is a "l".

P-FETs can only pull the ouput to "I", and only if one or more of their inputs is a " 0 ".

COMPOSING GATES TO BUILD OTHERS

Let's start with a couple of basics, AND and OR. Each can be constructed using a pair of CMOS gates, AND is just NAND with an inverter, and OR is just NOR with an inverted output.

$9 / 29 / 2022$

Comp 311 - Fall 2022

COMPOSING ARBITRARY GATES

How many different gates do we really need?
We can always do it with 3 different types of gates (AND, OR, INVERT), and sometimes

The TRICK is to OR the ANDs of all input combinations

Ithat generate an output of "I". You don't need the OR gate if only one input combination results in a "I".

You need Inverters to handle input combinations involving " 0 " s, ANDs, and ORs. with 2 , but, can we use fewer?

ONE WILL DO!

NANDs and NORs are UNIVERSAL!

A UNIVERSAL gate is one that can be used to implement *AN** COMBINATIONAL FUNCTION. There are many UNIVERSAL gates, but not all gates are UNIVERSAL

Q: What is a COMBINATIONAL FUNCTION? A: Any function that can be written as a truth table.

Ah, but what if we want more than 2-inputs?

stupid cate tricks

Suppose we have some 2 -input XOR gates:

output $=1$

iff number of "1"s input is ODD ("PARITY")

$$
t_{p d}=N n S ~--W O R S T \text { CASE. }
$$

Can we compute an N-input XOR faster?

I Think That I shall Never See
a cate lovely as a ...

N-input TREE has o(_log N_) levels...

EVERY N-Input Combinational function be implemented using only 2 -input gates? But, it's handy to have gates with more than 2-inputs when needed.
signal propagation takes 0 ($\log \mathbf{N}$) gate delays.

A SYSTEMATIC DESIGN APPROACH

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

-it's systematic!
-it works!
lit's easy!
Ewe get to go home!

1) Write the functional spec as a truth table
2) Write down a Boolean expression for every ${ }^{\prime} \mathrm{T}$ ' in the output

$$
\begin{aligned}
y= & (!C \&!B \& \& A) \|(I C \& \& B \& \& A) \\
& \|(C \& \& B \& \& \mid A)\|(C \& \& B \& \& A)
\end{aligned}
$$

3) Wire up the ideal gates, replace them with equivalent realizable gates, call it a day, and go home!
This approach will always give us logic expressions in a particular form:
suM-OF-PRODUCTS

STRAIGHTFORWARD SYNTHESIS

We can implement
SUM-OF-PRODUCTS with just 3 levels of logic.

INVERTERS/AND/OR

OTHER USEFUL GATE COMBINATIONS

OTHER USEFUL CMOS GATES

AOI (AND-OR-NNERT)

OAI (OR-AND-INVERT)

D

B

AOI and OAI
structures can be realized as a single CMOS gate. However, their function is equivalent to 3 levels of logic.

an Interesting 3-Input cate

Based on C, select the A or B input to be copied to Y.

schematic

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

MUX COMPOSITIONS AND SHORTCUTS

A 4-bit wide 2-input Mux
A 4-input Mux
(implemented as a tree)

MUX FUNCTION SYNTHESIS

Consider implementation of some arbitrary Combinational function, $F(A, B, C)$... using a MULTIPLEXER as the only circuit element.

Mux Logic: An example "configurable"

MUX LOGIC TRICKS

We can apply certain optimizations to MuX Function synthesis

Desired Logic
Function

next time

Binary Circuits that: ADD SUBTRACT SHIFT

