ASSEMBLERS AND LINKERS

Long, long, time ago, I can still remember
How mnemonics used +o make me smile..
Cause I knew with just those opcode names
that I could play some assembly games

and T'd be hacking kernels in just awhile.
But Comp Il made me shiver,

With every new lecture that was delivered,
There was bad news at the doorstep,

I just didn't get the problem sets.

When I find my code in tons of frouble,
Friends and colleagues come to me,
Speaking words of wisdom:
"Wr;+e in C"

I can} remember if T cried,

When inspecting my stack frame’s insides,
All T know is that it crushed my pride,
On the day the joy of software died.

And I was singing...

o Stay tuned for
updates to
problem 4 of
Problem set #2

9/15/2022 Comp 3l - Fall 2022



LUl TRICKS ﬁ:ﬁ

—

There is a subtle trick requirecl to load Iarae cohstants
uc;ina L_Ul/ADDI combinations. Recall the ADDI *alwaycs* c;iﬁn
extends its immediate orgument:

# load tO with 0x01234567 # load tO with Ox89ABCDEF (@

lui t0,0x01234 lui t0, Ox89ABD

addi t0, t0, 0x567 addi t0, t0, OxDEF \
Why 0x39ABD
and net 0x84ABC?

Sign—extension of is like

addng - sowe compensate AT ter lui t0:0x89ABD 000

ol bt et ddi OxFFFFF DEF

9

9/15/2022 Comp 3l - Fall 2022 2



A ROVTE FROM PROGRAM TO BITS
Traditional Compilation

High-level, portable
(archHecture independent)

program description

Archiecture, TSA,
Dependent program
description with symbolic

memory references

Machine lanquage with
“some” remaining symbolic
memory references

9/I5/2022

C or C++ program

< Compiler

‘Library Routines'

Assembly Code

‘Executadble’

Assembler

v

‘Object Code'

"Memor'y‘l

Comp 3l - Fall 2022

A collection of precompiled
object code modules

Machine lanquage
with all memory references

resolved

Program and data bits
loaded into memory



WHAT AN ASSEMBLER DOES

Aesembly is just a recipe For sequentially Pillina memory locations.

g —
\
-word 0x01000293,0/xFFC28293\ pddress contents
word Ox0052AA23 XFEO29CE 0x00000000 0x01000293 16777875
’ ' 0x00000004 OxFFC28293 -4029805
.word Ox0000006F
— — 0x00000008 Ox0052AA23 5417507
-SP — 0x0000000C OxFE©B29CE3 -33383197
[ Ox00000010 Ox0000006F 111
0x00000014 0x00000000 0
0x00000018 0x00000000 0
0x0000001C 0x00000000 0
| Ox00000020 0x00000000 0
You can even
assemble and run Address Contents Instruction
this program
\

‘/ 0x00000000 0x01000293 .word 0x01000293, OxFFC28293 # [addi x5,x0,16]
0x00000004 OxFFC28293 .word 0x01000293, OxFFC28293 # [addi x5,x5,-4]
0x00000008 Ox0052AA23 .word ©Ox0052AA23, OxFE@29CE3 # [sw x5,20(x5)]
0x0000000C OXFE©29CE3 .word Ox0052AA23, OxFEQ29CE3 # [bne x5,x0,.-8]

9/I5/2022

Comp 3l - Fall 2022




WHAT AN ASSEMBLER DOES

Aesemla\y is just a recipe For sequentially Pi\lir\a memory locations.

Address
0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020

Contents
0x01000293
OxFFC28293
Ox0052AA23
OxFEB29CE3
OXx00000B6F
0x00000000
0x00000000
0x00000000
0x00000000

16777875
-4029805
5417507
-33383197
111

0

0
0
0

main: 1li t@,16
loop: addi te,te,-4
sw t0,a(te)

bne t0,x0,loop

Instruction

main: 1i t0, 16
loop: addi t0,t0, -4
SW 10,a(t0)
bne t0, x0, loop
halt: j halt
a: .space 4
And this recipe is
equivalent fo the Address Contents
first
\

‘/ 0x00000000 0x01000293
0x00000004 OxFFC28293
0x00000008 0x0052AA23
0x0000000C OXFE@29CE3

/15 /2022

Cow?‘%-FmIZOZZ




How AN ASSEMBLER WORKS

Three major components of asc;emlaly
) Allocating and initidlizing data storage
2) Conversion of mnemonics to binary instructions
3) Resolving addresses

) ) __Seo is this
reset: j main | —$
array: .space 11 NB
total: .word 0
main: 1i t2,0
1i t3,1
iv:\l' :g ;I:;I)tal __This one is a PC-relative offset
i E ‘“8 . __This is a forward reference
loop: add t0,t0,t3
slli t51t2;2 Neec]'}oﬂgureou'Hhis
SW t3,array(t5) immediate value
add t3,t3,t3 Ng
addi  t2,t2,1
blt £2,t4,100P 1hg offaet is complefely different
SW to, tOtal -Hman the one a few instructions ago
*halt: j halt ‘“8

9/15/2022 Comp 3l - Fall 2022



RESOLVING ADDRESSES- )’ PASS

“Old—eryle" 2-pass assembler approach

Address

0
4
48

52
56
60
64
68
72
76
80
84
88
92
96
100

9/I5/2022

Machine Code

0x0000006f
0x00000000
0x00000000

0x00000393
0x00100E13
0x00BOOE93
0x00002283
0x0000006f
0x01C282B3
0x00239F13
Ox01CF2023
Ox01CEBGE33
0x00138393
0x01D3CO63
0x00502023
0x0000006F

Assembly Code

reset:
array:
total:

main:

loop:

test:

*halt:

j
.space
.word

main
11
0

t2,0

t3,1

t4,11

t0, total
test
t0,t0, t3
t5,t2,2
t3,array(t5)
t3,t3,t3
t2,t2,1
t2,t4,loop
t0, total
halt

Cow?‘%-FmIZOZZ

Ih the First pass, data and
instructions are encoded
and ossigned offsets,
while a symlaol table is
constructed

Unresolved address
references are set to O

Symbol Location
reset 0

array 4

total 48

main 52

loop 72

test 92

halt 100



RESOLVING ADDRESSES (N 2'° pASS

"Olcl—ery\e“ 2-pass assembler approoch

Address

0
4
48

52
56
60
64
68
72
76
80
84
88
92
96
100

9/I5/2022

Machine Code

0x3400006f
0x00000000
0x00000000

0x00000393
0x00100E13
0x00BOOE93
0x30002283
0x1800006f
0x01C282B3
0x00239F13
Ox01CF2223
Ox01CEBGE33
0x00138393
OxFFD3C6E3
0x02502823
Ox0000006F

Assembly Code

In the First pass, data and
instructions are encoded

reset: j main
array: J_Space 11 and asc;ianed offsets,
total: .word © while a symlaol table is
in 1i 2.0 constructed.
1i 3.1 Unresolved address
1i t4,11 references are set to O
1w t0, total
j test
add t0,t0,t3 Symbol | Address
slli  t5,t2,2
sSw t3,array(t5) reset 0x00000000 (0)
add t3,t3,t3 array 0x00000004 (4)
addi t2,t2,1 total 0x00000030 (48)
blt t2,t4,loop main 0x00000034 (52)
sSw t0, total loop 0x00000048 (72)
j halt test 0x00000805C (92)
— halt 0x00000064 (100)

Cow?‘%-FmIZOZZ



MODERN )-PASS ASSEMBLER

Modern assemblers keep more infFormation in their symbol
table which adllows them to resolve addresses in a single pass.
e Knowh addresses (backward references) are immeoliaJrely resolved.

e Unkhown or uhresolved addresses (Forward references) are
‘back-Filed" once they are resolved.

State of the symbol Symbol Address Resolved? | Reference List
table affer the
instruction ~ reset 0x00000000 (0) Y 0
sw 13, array(4S) .- | array 0x00000004 (4) Y 80
is assembled T total 0x00000030 (48) Y 64,?
main 0x00000034 (52) Y 0
loop 0x00000048 (72) Y ?
test ? N 68
halt ? N ?

9/15/2022 Comp 3l - Fall 2022



ROLE OF A LINKER

Some aspects ofF address resolution cannot be handied loy the assembler alone.

| References to data or routines in other object modules
2. The layout of all segments in memory
3. Support for REUSABLE code modules To handie this an object Fie

4. support for RELOCATABLE code modules ~ ncludes a symbol table with
) Unresolved references

' 2) Addresses of labels declared
This Final c;+eP of resolution is the Job of a LINKER to be "global’ (ie. accessible

o o to other object modules).

§o\‘4rce —p> Assembler —Pp Ob:ec-l-
file ile \

\
U4
?5:‘ —»> Assembler —9 e —  Linker File

— ) — )
Source —> Assembler —» Object T

file ile
7 Y

9/15/2022 Comp 3l - Fall 2022 10




=\
STATIC AND DYNAMIC LIBRARIES L]

¢

e LIBRARIES are commonly used routines stored as a concatenation of
“Olajec+ Fies" A global c;ymloo\ table is maintained for the entire library
with el"l'l'r‘y Poirﬂ'e For each routine.

e Wheh a routine in a LIBRARY is referenced on an acssembly module, the
routine's address is resolved Iax/ the LINKER, and the appropriate code is
added to the executdble. This sort of Iinkina is caled STATIC \inkina.

e Many programs use common libraries. It is wasteful of both memot-y ond
disk. space to include the same code in multiple executables. The modern
alternative to STATIC linkina is to dlow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (ex. dI.

9/15/2022 Comp 3l - Fall 2022 I



DynamicaLLY LINKED LIBRARIES

o C cadl to Iilor‘ar‘y Function:
printf(“sqr[%d] = %d\n", x, y);

o A%emb\y code

1i ao, #1

1i al,ctrlstring

1w a2,x

1w a3,y

auipc r31, __stdio__
addi r31,r31,__stdio__
jalr ra 16(r31)

Two things: g
) Calling a functien using a pointer

2) There is a table of library entry
points located at known fixed
offsets from the library's index

9/15/2022 Comp 3l - Fall 2022

How does
dynamic linking
work?

//J
2




DynamicaLLY LINKED LIBRARIES

- Lazy address resolution:

sysload: addi sp,sp, -4

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
4able are loaded

on an "as needed”

basis! \

)

9/I5/2022

SwW

ra, (sp)

# check if stdio module
# is loaded, if not load it

# backpatch jump table

la
la
sw
la
SW
la
sw
la
SW
la
sw

t1

0, (t1)

t0,dfclose

t0,4(t1)

t0,dfputc

t0,8(t1)

t0,dfgetc
t0,12(t1)
t0,dfprintf
t0,16(t1)

stdio__
t0,dfopen

\

Cow?‘%-FmIZOZZ

Before any call is made fo a

procedure in “stdiod|l”
.globl _ stdio_ :
__stdio__:
fopen: .word sysload
fclose: .word sysload
fgetc: .word sysload
fputc: .word sysload
fprintf: .word sysload

After the first call is made
o any procedure in “stdiodll”

.globl _ stdio_ :
__stdio__ :

fopen:
fclose:
fgetc:
fputc:

fprintf:

dfopen
dclose
dfgetc
dfputc
dprintf



MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description

PORTABLE mnemonic program
description with symbolic memory
references

An application that EMULATES a
virtual machine. Can be written

for any Instruction Set Architecture.
In the end, machine language
instructions must be executed for
each JMM bytecode

9/I5/2022

< Tnerpretr =

Java program

JW byfecodes

“Library Routines”

v

Comp 3l - Fall 2022



MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

+

PORTABLE mnemonic program “ . « o B
Joscriphion with eympott memory | 9VM bytecodes | (Library Routines

rences

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.

0

Future references access machine Toddy'S JlTs are nearly as
!2;,"9:‘,?9;25,’,17. cveting furiher fast as a nalive compiled code.

Machine code

9/15/2022 Comp 3l - Fall 2022




ASSEMBLY? REALLY?

® In the early alayc; compilers were dumbp
o literal line-by-line generation of assembly code of 'C' source

o This was efficient in terms of s/W deve\opmerﬁ time

m Cis Por‘Jralale, ISA inclepenolerﬂ', write once- run ar\ywlner'e
m C is easier to read and understand
m Details of stack alocation and memory moanagement are hidden

o However, a savvy programmer could near\y always ﬂenercﬁre
code that would execute Faster

e Enter the modern era of Compilers
Focused on oPJrimized code—ﬂeneraﬁon

CaPJrured the common tricks that low-level progrommers used
Meticulous laookkeepina (ie. will | ever use this variable aaain?)

O O O O

It is hard for even the best hacker to improve on code
aener'aJred on ﬁoool optimizing compilers

9/15/2022 ComP 3l - Fall 2022



NEXT TIME

© Play with the RISC-V
compiler

e Compiler code
optimization

e We look deeper into the
Rabbit hole

9/15/2022 Comp 3l - Fall 2022 7



