
09/08/2022 Comp 311 - Fall 2022

Stacks and Procedures

Language support for modular code is an integral part of modern computer
organization. In particular, support for subroutines, procedures, and functions.

1

Don’t know. But, if
you PUSH again I’m

gonna POP you.
I forgot, am I

the Caller
or Callee?

● Problem set #1
is due before
midnight tonight

● Problem set #2
will become
active this
afternoon

09/08/2022 Comp 311 - Fall 2022

Pseudo-instructions

The miniRISCV assembler/simulator supports many mnemonics that
aren't actual instructions at all. They provide common shortcuts.

2

Pseudoinstruction Translation

neg rd,rs sub rd,x0,rs

not rd,rs xori rd,rs,-1

j label jal x,label

mv rd,rs addi rd,rs,0

ret jalr x0,x1

bgt rs,rt,label blt rt,rs,label

ble rs,rt,label bge rt,rs,label

la rd,label # pc relative auipc rd,label_hi
addi rd,rd,label_lo

li rd,value lui rd,value_hi
addi rd,rd,value_lo

09/08/2022 Comp 311 - Fall 2022

Assembler Directives

There are also many assembler directives that provide
hints to the assembler for allocating memory locations

3

Directive Meaning

.word v1,v2,v3, ...,vn Initialize sequential memory words with values
v1, v2, etc

.space N Allocate space for N words

.string "anysizeoftext" Initialize sequential memory bytes based on the
given string

.text Place the following in the .text segment
(usually instructions)

.data Place the following in the .data segment
(usually global or static data declarations)

.align N N must be a power of 2. Adjusts the next
address in the current segment such that
address % N == 0

09/08/2022 Comp 311 - Fall 2022

The Beauty of Procedures

● Reusable code fragments (modular design)
clear_screen();

… // code to draw a bunch of lines
clear_screen();

…
● Parameterized procedures (variable behaviors)

line(x1,y1,x2,y2,color);
line(x2,y2,x3,y3,color);

…
● Functions (procedures that return values)

xMax = max(max(x1,x2),x3);
yMax = max(max(y1,y2),y3);

4

for (int i = 0; i < N-1; i++)
 line(x[i],y[i],x[i+1],y[i+1],color);
line(x[i],y[i],x[0],y[0],color);

09/08/2022 Comp 311 - Fall 2022

More Procedure Power

● Global vs. Local scope (Name Independence)
int x = 9;

int fee(int x) {
return x+x-1;

}

int foo(int i) {
int x = 0;
while (i > 0) {

 x = x + fee(i);
 i = i - 1;

}
 return x;
}

main() {
 fee(foo(x));
}

5

These are different “x”s

This is yet another “x”

How do we
keep track of
all these
variables?

That “fee()” seems odd to me?
And, foo()’s a little square.

09/08/2022 Comp 311 - Fall 2022

Recap: We defined ABI conventions

6

By convention, the RISC-V
registers are assigned to
specific uses and names
used in the ABI. These are
supported by the
assembler, and high-level
languages. We’ll use these
names increasingly. Why
have such conventions?

x0/zero (always zero)
x1/ra (return address)
x2/sp (stack pointer)
x3/gp (global pointer)
x4/tp (thread pointer)

x5/t0 (temporary)
x6/t1 (temporary)
x7/t2 (temporary)

x8/fp (frame pointer)
x9/s1 (saved)

x10/a0 (argument/return value 1)
x11/a1 (argument/return value 2)

x12/a2 (argument)
x13/a3 (argument)
x14/a4 (argument)
x15/a5 (argument)

x16/a6 (argument)
x17/a7 (argument)

x18/s2 (saved)
x19/s3 (saved)
x20/s4 (saved)
x21/s5 (saved)

x22 (saved)
x23 (saved)
x24 (saved)
x25 (saved)
x26 (saved)
x27 (saved)

x28 (temporary)
x29 (temporary)
X30 (temporary)
X31 (temporary)

09/08/2022 Comp 311 - Fall 2022

A Function That Worked

main: lw a0,x
 lw a1,y
 jal ra,gcd
 sw a0,z

*halt: j halt

x: .word 35
y: .word 55
z: .word 0

7

gcd: beq a0,a1,return
 blt a0,a1,else
 sub a0,a0,a1
 beq x0,x0,gcd
else: sub a1,a1,a0
 beq x0,x0,gcd
return: jalr zero,(ra)

int x = 35;
int y = 55;
int z;

void main() {
 z = gcd(x, y);
}

int gcd(a,b) {
 while (a != b) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 return a;
}

Here the assembly language
version is actually shorter
than the C version.

09/08/2022 Comp 311 - Fall 2022

And one that Didn't

8

main: lw a0,x
 jal ra,fact
 sw a0,y
*halt: j halt

x: .word 2
y: .word 0

fact: addi t0,x0,1
 bge t0,a0,return
 addi t0,x0,a0
 addi a0,a0,-1
 jal ra,fact
 mul a0,a0,t0
return: jalr x0,ra

int x = 5;
int y;

void main() {
y = fact(x);

}

int fact(x) {
 if (x <= 1)
 return x;
 else
 return x*fact(x-1);
}

This time, things are really messed up.

The recursive call to fact() overwrites
the daved value of x in t0.

To make a bad thing worse,
the ra is also overwritten.

I knew there was a reason
that I avoid recursion.

09/08/2022 Comp 311 - Fall 2022

A simple Case

Works for cases where Callees
need few resources and call no
other functions.

This type of function (one that calls
no other) is called a LEAF function.

But there are still a few issues:
 How does a Callee call functions?
 More than 4 arguments?
 Local variables?
 Where does main return to?

Let’s consider the worst case of a
Callee who is a Caller...

9

x: .word 9

fee: add a0,a0,a0
 addi a0,a0,1
 jalr x0,ra

main: lw a0,x
 jal ra,fee
 jalr x0,ra

Recall that the
address of the
next instruction
is saved in the
“linkage pointer”,
LP.

The “jalr” instruction
changes the PC to
the contents of the
specified register.
Here it is used to
return to the
address after the
one where “fee” was
called.

Callee

Caller

09/08/2022 Comp 311 - Fall 2022

Callees who call themself!

10

How do we go about writing
non-leaf procedures?
Procedures that call other
procedures, perhaps even
themselves.

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main() {
 sqr(10);
}

Oh, recursion
gives me a
headache.

sqr(10) = sqr(9)+10+10-1 = 100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sqr(6) = sqr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqr(4) = sqr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 = 9
sqr(2) = sqr(1)+2+2-1 = 4
sqr(1) = 1
sqr(0) = 0

09/08/2022 Comp 311 - Fall 2022

A First Try

11

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

sqr: slti t0,a0,2
 bne t0,x0,return
 add s0,x0,a0
 addi a0,a0,-1
 jal ra,sqr
 add a0,a0,s0
 add a0,a0,s0
 addi a0,a0,-1
return: jalr x0,ra

main: addi a0,x0,10
 jal ra,sqr
 jalr x0,ra

S0 is
clobbered
on successive
calls.

We also
clobber our
return
address, so
there’s no
way back!

OOPS!

Will saving “x” in memory rather than in a register help?

i.e. replace add s0,x0,a0 with sw a0,x and adding lw s0,x after jal sqr

09/08/2022 Comp 311 - Fall 2022

A Procedure’s Storage Needs

● In addition to a conventions for using registers to pass in arguments
and return results, we also need a means for allocating new
variables for each instance when a procedure is called.
The “Local variables” of the Callee:

...
{
int x, y;

 ... x ... y ...;
}

● Local variables are specific to a “particular” invocation or activation
of the Callee. Collectively, the arguments passed in, the return
address, and the callee’s local variables are its activation record, or
call frame.

12

09/08/2022 Comp 311 - Fall 2022

Lives of Activation Records

13

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created by
call we are returning from.

sqr(3)
sqr(2)

sqr(3)
sqr(2)

Where are activation
records stored?

sqr(3)
sqr(2)
sqr(1)

sqr(3)

Each call of sqr(x) has a different notion of
what “x” is, and a different place to return to.

09/08/2022 Comp 311 - Fall 2022

We need dynamic storage!

14

What we need is a
SCRATCH memory for
holding temporary variables.
We’d like for this memory
to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

Some interesting
properties of
stacks:

SMALL OVERHEAD.
Everything is
referenced relative
to the top, the
 so-called
 “top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

09/08/2022 Comp 311 - Fall 2022

RISC-V Stack Convention

15

CONVENTIONS:
• Allocate a register for

the Stack Pointer
(SP = x2).

• Stack grows DOWN
(towards lower addresses)
on pushes and allocates

• SP points to the last or
TOP *used* location.

• Stack is placed far away
from the program
and its data.

SP

Higher
addresses

Lower
addresses

Humm… Why
is that the TOP
of the stack?

Reserved

“text” segment
(Program)

“stack” segment
BFFF FFFF16

0001 000016

Dynamic data (Heap)

09/08/2022 Comp 311 - Fall 2022

ALLOCATE k: reserve k WORDS of stack
 SP = SP - 4*k

DEALLOCATE k: release k WORDS of stack
 SP = SP + 4*k

PUSH $x: push Reg[x] onto stack
Mem[SP - 4] = Rx
SP = SP - 4

POP $x: pop the top of the stack into Reg[x]
 Rx = Mem[SP]

 SP = SP + 4

Stack Management

16

addi sp,sp,-4
sw rx,(sp)

addi sp,sp,-4*k

addi sp,sp,4*k

lw rx,(sp)
addi sp,sp,4

09/08/2022 Comp 311 - Fall 2022

Incorporating A StaCK

17

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

sqr: addi sp,sp,-8
 sw ra,4(sp)
 sw s0,0(sp)
 slti t0,a0,2
 bne t0,x0,return
 add s0,x0,a0
 addi a0,a0,-1
 jal ra,sqr
 add a0,a0,s0
 add a0,a0,s0
 addi a0,a0,-1
return: lw s0,0(sp)
 lw ra,4(sp)
 addi sp,sp,8
 jalr x0,ra

main: addi sp,sp,-4
 sw ra,(sp)
 addi a0,x0,10
 jal ra,sqr
 lw ra,(sp)
 addi sp,sp,4
 jalr x0,ra

function
prologue

function
epilogue

09/08/2022 Comp 311 - Fall 2022

Next time

Still some loose ends to tie up

1. More than 8 arguments
foo(a,b,c,d,e,f,g,h,i)

2. Addresses of arguments
int fee(x) {

int *y = &x;
}

3. Complex argument types
int a[10];
struct point { int x; int y; };
struct point p = { 3, 4 };

y = sum(a, &p);

18

