=\
ASSEMBLING THE LAST FEW BITS L]

¢

m

/ALLEN, T KNEW T WAS
GETTING LUCKY WHEN SHE
WHISPERED THOSE 3 MAGIC

WORDS TO ME, L=
= rjf'-.-'/

More Assemb\y Practice

SOME ASSEMBLY | o :
REQUIRED E‘ Mu|+||9\|ca+lon
i — ’ Division

Coaliing Proceolur'es

UGaﬂe conventions

Problem set # is due
one week from +oo|ay

BREIER 2013 Acottscartoons com =

Meet in SNOI4 next Thurc:»clay

09/01/2022 Comp 3l - Fall 2022 |

LoAD AND STORES (N ACTION

An example of how loads and stores are used to access arrays.

C:

int sum = O;
int values[10] = {1,3,5,7,9,11,
13,15,17,19};

int 1i;

for (1 = 0; i < 10; i++)
sum += value[i];

09/01/2022

A%emloly:

addi
addi
loop: slli
1w
1w
add
value[i];
SW
addi
blt
*halt: jal

sum: .word
values: .word

Cowp‘%-leZOZZ

x31,x0,10
x5,x0,0 # x5 is 1
X6, x5, 2
x6,values(x6)
X7, sum(x0)
X7,X7,x6

value[i]
x5 is sum
sum +=

H H

X7 ,sum(x0)
X5,x5,1
x5,x31, loop
x0, halt

0
1,3,5,7,9,11,13,15,17,19

MISSING MATH INSTRUCTIONS 1Al

S

The RISC-V ISA includes integer multiplication and division as an
extension to the RV32Zl minimal ISA called RV32M. This is because
mulJriPIy and divide require signif-icarﬁ additional H/W. These instructions
con always be emulated, and cost is a consideration for embedded
systems. Our minRISCV simulator includes a subset of RV32M, the
subset hecessary to implement C.

313029282726252423222120191817161514131211 10 9 8 7 6 5 4 3 2 1 0
T T T 1 T 1 I T T 1

R-type: [0|0|0|0(O(0O|1 rsZ rs1 funcB rd 0|1(1]0(0[1|1

000 - MUL
1?8'52/“/' This opcode is the same as the all other
) R-type instructions. it is the setting of
the ‘Fune T Field that indicates the
optional rru\hply/cf ivide instructions

N\
@

09/01/2022 Comp 3l - Fall 2022 3

mMuLneLy

MUL: multiply registers

Syntax: mul rd,rs,rt
Encoding: 0000 001t tttt ssss s000 dddd d011 0011
Description:

Reg[d] < Reg]s] * Reg]t]

Multiply the contents of Reg[s] and Reglt], and place the lower 32-bits of
the product in Reg/[d]. Overflows are ignored. MUL is binary and
semantically compliant with the RV32M mul instruction.

Example: mul x5,x6,x7 # Encoded as: 0x027302B3

09/01/2022 Comp 3l - Fall 2022

DIVIDE

DIV: divide registers

Syntax: div rd,rs,rt
Encoding: 0000 001t tttt ssss s100 dddd d011 0011
Description:

Reg[d] < Reg]s] / Regl[{]

Divide the contents of Reg[s] by Regft], and place the quotient in
Reg[d]. A divisor of 0 does not generate an overflow, and the
destination register rd is set to all ones. DIV is binary and semantically

compliant with the RV32M div instruction.

Example: div x7,x5,x6 # Encoded as: 0x0262C3B3

09/01/2022 Comp 3l - Fall 2022

REMAINDER

REM: remainder of a register quotient

Syntax:
Encoding:
Description:

Example:

09/01/2.022

rem rd,rs,rt
0000 001t tttt ssss s110 dddd d011 0011

Reg[d] < Reg]s] % Req|t]

Divide the contents of Reg[s] by Reg[t], and place the remainder in
Reg[d]. A divisor of 0 does not generate an overflow and the contents of
the destination register rd is set to the dividend, Reg/[s]. REM is binary
and semantically compliant with the RV32M rem instruction.

rem x7,x5,x6 # Encoded as: 0x0262E3B3

Comp 3l - Fall 2022

P\
ANOTHER INSTRUCTION 11

S

Recall that last lecture we discussed the virtues of relocatable code
resu\’ring From having PC-relative bronch ond jump instructions. However,
there is stil a problem with relocatable 'data". For instance you might
want to place a data structure in a code section and be able to relocate
it without the need for keeping track of the absolute addresses. Earlier
RISC architectures, like MIPS, provided Wi to construct addresses, but
these were absolute addresses, so, in practice, dmost all compilers would
locate variables using a pointer scheme so they could be relocated. RISCV
Fixes this problem with a pc-relative liHike instruction called auipe

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543 2 10
T 1T 1 17 17 17T 17T 17T 17T 17T T T T T T T T 1

U-type: Imm20 rd 0l10{110]1(11]1

auipc x10,next # encoded as 0x00000517
next:

09/01/2022 Comp 3l - Fall 2022 7

AVIPC DETAILS

AUIPC: Add Upper Immediate to PC

Syntax: auipc rd,imm20
Encoding: iiii iiii iiii iiii iiii dddd d011 0011
Description:

Reg[d] < PC + sign_extend(imm20 << 12)
Adds the sign-extended 20-bit immediate value, left-shifted by 12 bits,
to the program counter, and writes the result to Reg[d].

Example: auipc x31,1024 # Encoded as: 0x00400F97

Also, the combination of an auipc. instruction and a jalr can
tronsfer control (jump) to any memory location. Both
branch and jump instructions have limited ranges.

09/01/2022 Comp 3l - Fall 2022

PSEUDO-INSTRVCTIONS

09/01/2022 Comp 3l - Fall 2022

ASSEMBLER DIRECTIVES

09/01/2022 Comp 3l - Fall 2022

P\
FUNCTIONS AND PROCEDURE CALLS Th

S

Functions and Pr‘ocedur‘es are essential comPonerH'c; of code reuse.
The adlso dlow code to be oraanized into modules. A key components
ofF Procealures ore they:

e con be called From anywhere by a cadller, ond when Finished, they
return back to where they were called From

® can have their only local variables

e clean up behind themselves, they avoid creating unintended
side-effects

® can call themselves to implement

[2

Recursive methods/functions

09/01/2022 Comp 3l - Fall 2022 I

=\
SUPPORTING PROCEDURE CALLS L]

S

Reusable code also reqguires aareed upon conventions, such as where
a caller's arguments can be Found by the cadllee. These are actually
not part ok the ISA they are part ok a standard called the
processor’s "Application Binary Interface' or ABI

Basics of procedure calling [2

. Put parameters where the

called procedure can Find them

Transker control to the procedure

Acquire the needed storage For procedure varidbles
Perform the expected calculation

Put the result where the cadller can Find them

© Ul & w W

Return control to the point just ofter where it was called

09/01/2022 Comp 3l - Fall 2022 73

REGISTER VSE CONVENTIONS

By convention, the RISC-V
registers are a«;signeal to
specikic uses and names
used in the ABIL These are
supported by the
assembler, and high-level
lahguages. We'll use these
hames increasingly. Wlny
have such conventions<

09/01/2022

x0/zero (always zero)
x1/ra (return address)
x2/sp (stack pointer)
x3/gp (global pointer)
x4/tp (thread pointer)
x5/t0 (temporary)
x6/t1 (temporary)
x7/t2 (temporary)
x8/fp (frame pointer)
x9/s1 (saved)
x10/a0 (argument/return value 1)
x11/a1 (argument/return value 2)
x12/a2 (argument)
x13/a3 (argument)
x14/a4 (argument)
x15/a5 (argument)

Comp 3l - Fall 2022

x16/a6 (argument)
x17/a7 (argument)
x18/s2 (saved)
x19/s3 (saved)
x20/s4 (saved)
x21/s5 (saved)
x22 (saved)
x23 (saved)
x24 (saved)
x25 (saved)
x26 (saved)
x27 (saved)
x28 (temporary)
x29 (temporary)
X30 (temporary)
X31 (temporary)

Ll

—

BASICS OF PROCEDURE CALLING

main:

*halt:

<

09/01/2022

lw alf, x
lw a1,y
jal ra,gcd
sw a0,z

j halt

.word 35
.word 55
.word 0

ged: beq
___,,///////’—_)k blt

Ll

a0, al, return
a0,al,else

sub a0, a0,al
int x = 35; beq x0,x0,gcd
int y = 395;
int z; else: sub al,al, a0
void main() A l?eq x8,x8, gcd
z = ged(x, y); return: jalr zero,(ra)
}
int gcd(a,b) {
while (a !'= b) {
if (a > b) {
a=a-b: Here the assembly lanquage
} else { version is actually shorfer
b=b- a- —"4han $he C version.
) ’ 4
}
return a;
}

Cowp‘%-—FdlZOZZ

THAT WAS A LITTLE TO0 EASY

main:

*halt:

X.
Y.

09/01/2022

lw a0, x fact: addi
jal ra,fact-—’///’)> bge

sw af,y addi
j halt addi
.word 2 jal
.word 0 mul
return: jalr
int x = 5;
int y;
void main() {
y = fact(x);
}
int fact(x) {
if (x <= 1)
return x;
else

return x*fact(x-1);
} Comp 3l - Fall 2022

t0, x0, 1

t0, a0, return
t0, x0, aob

a0, a0, -1

ra, fact

a0, a0, to

X0, ra

This time, things are really messed up.

The recursive call fo fack() overwrites

the daved value of x in 10.

2 To make a bad thing worse,
_‘ the ra is dlso overwritten.

I knew there was a reason
that I aveid recursion.

NEXT TIME

09/01/2022

® Stacks
e Contracts
© \Nri’rina

serious code

Comp 3l - Fall 2022

