
09/01/2022 Comp 311 - Fall 2022

Assembling the last few bits

● More Assembly Practice
● Multiplication
● Division
● Calling procedures
● Usage conventions

P Problem set #1 is due
one week from today

Meet in SN014 next Thursday

1

09/01/2022 Comp 311 - Fall 2022

Load and Stores in action

An example of how loads and stores are used to access arrays.

C:

int sum = 0;
int values[10] = {1,3,5,7,9,11,
 13,15,17,19};

int i;

for (i = 0; i < 10; i++)
 sum += value[i];

2

Assembly:

 addi x31,x0,10
 addi x5,x0,0 # x5 is i
loop: slli x6,x5,2
 lw x6,values(x6) # value[i]
 lw x7,sum(x0) # x5 is sum
 add x7,x7,x6 # sum +=
value[i];
 sw x7,sum(x0)
 addi x5,x5,1
 blt x5,x31,loop
*halt: jal x0,halt

sum: .word 0
values: .word 1,3,5,7,9,11,13,15,17,19

09/01/2022 Comp 311 - Fall 2022

Missing Math instructions

The RISC-V ISA includes integer multiplication and division as an
extension to the RV32I minimal ISA called RV32M. This is because
multiply and divide require significant additional H/W. These instructions
can always be emulated, and cost is a consideration for embedded
systems. Our miniRISCV simulator includes a subset of RV32M, the
subset necessary to implement C.

3

31

0
30

0
29

0
28

0
27

0
26

0
25

1
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

1
4

1
3

0
2

0
1

1
0

1func3rs1R-type:

000 - MUL
100 - DIV
110 - REM

rs2 rd

This opcode is the same as the all other
R-type instructions. It is the setting of
the "func7" field that indicates the
optional multiply/divide instructions

09/01/2022 Comp 311 - Fall 2022

MultiplY

MUL: multiply registers

Syntax: mul rd,rs,rt
Encoding: 0000 001t tttt ssss s000 dddd d011 0011
Description:

Reg[d] ← Reg[s] * Reg[t]

Multiply the contents of Reg[s] and Reg[t], and place the lower 32-bits of
the product in Reg[d]. Overflows are ignored. MUL is binary and
semantically compliant with the RV32M mul instruction.

Example: mul x5,x6,x7 # Encoded as: 0x027302B3

4

09/01/2022 Comp 311 - Fall 2022

Divide

DIV: divide registers

Syntax: div rd,rs,rt
Encoding: 0000 001t tttt ssss s100 dddd d011 0011
Description:

Reg[d] ← Reg[s] / Reg[t]

Divide the contents of Reg[s] by Reg[t], and place the quotient in
Reg[d]. A divisor of 0 does not generate an overflow, and the
destination register rd is set to all ones. DIV is binary and semantically
compliant with the RV32M div instruction.

Example: div x7,x5,x6 # Encoded as: 0x0262C3B3

5

09/01/2022 Comp 311 - Fall 2022

Remainder

REM: remainder of a register quotient

Syntax: rem rd,rs,rt
Encoding: 0000 001t tttt ssss s110 dddd d011 0011
Description:

Reg[d] ← Reg[s] % Reg[t]

Divide the contents of Reg[s] by Reg[t], and place the remainder in
Reg[d]. A divisor of 0 does not generate an overflow and the contents of
the destination register rd is set to the dividend, Reg[s]. REM is binary
and semantically compliant with the RV32M rem instruction.

Example: rem x7,x5,x6 # Encoded as: 0x0262E3B3

6

09/01/2022 Comp 311 - Fall 2022

Another instruction

7

Recall that last lecture we discussed the virtues of relocatable code
resulting from having PC-relative branch and jump instructions. However,
there is still a problem with relocatable "data". For instance you might
want to place a data structure in a code section and be able to relocate
it without the need for keeping track of the absolute addresses. Earlier
RISC architectures, like MIPS, provided lui to construct addresses, but
these were absolute addresses, so, in practice, almost all compilers would
locate variables using a pointer scheme so they could be relocated. RISCV
fixes this problem with a pc-relative lui-like instruction called auipc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

0
4

1
3

0
2

1
1

1
0

1rdU-type: Imm20

 auipc x10,next # encoded as 0x00000517
next:

09/01/2022 Comp 311 - Fall 2022

AUIPC details

AUIPC: Add Upper Immediate to PC

Syntax: auipc rd,imm20
Encoding: iiii iiii iiii iiii iiii dddd d011 0011
Description:

Reg[d] ← PC + sign_extend(imm20 << 12)
Adds the sign-extended 20-bit immediate value, left-shifted by 12 bits,
to the program counter, and writes the result to Reg[d].

Example: auipc x31,1024 # Encoded as: 0x00400F97

8

Also, the combination of an auipc instruction and a jalr can
transfer control (jump) to any memory location. Both
branch and jump instructions have limited ranges.

09/01/2022 Comp 311 - Fall 2022

Pseudo-instructions

9

09/01/2022 Comp 311 - Fall 2022

Assembler Directives

10

09/01/2022 Comp 311 - Fall 2022

Functions and procedure Calls

Functions and procedures are essential components of code reuse.
The also allow code to be organized into modules. A key components
of procedures are they:

● can be called from anywhere by a caller, and, when finished, they
return back to where they were called from

● can have their only local variables
● clean up behind themselves, they avoid creating unintended

side-effects
● can call themselves to implement

Recursive methods/functions

11

09/01/2022 Comp 311 - Fall 2022

Supporting procedure Calls

Reusable code also requires agreed upon conventions, such as where
a caller's arguments can be found by the callee. These are actually
not part of the ISA, they are part of a standard called the
processor's "Application Binary Interface" or ABI.

Basics of procedure calling:

1. Put parameters where the
called procedure can find them

2. Transfer control to the procedure
3. Acquire the needed storage for procedure variables
4. Perform the expected calculation
5. Put the result where the caller can find them
6. Return control to the point just after where it was called

12

09/01/2022 Comp 311 - Fall 2022

Register usE conventions

13

By convention, the RISC-V
registers are assigned to
specific uses and names
used in the ABI. These are
supported by the
assembler, and high-level
languages. We’ll use these
names increasingly. Why
have such conventions?

x0/zero (always zero)
x1/ra (return address)
x2/sp (stack pointer)
x3/gp (global pointer)
x4/tp (thread pointer)

x5/t0 (temporary)
x6/t1 (temporary)
x7/t2 (temporary)

x8/fp (frame pointer)
x9/s1 (saved)

x10/a0 (argument/return value 1)
x11/a1 (argument/return value 2)

x12/a2 (argument)
x13/a3 (argument)
x14/a4 (argument)
x15/a5 (argument)

x16/a6 (argument)
x17/a7 (argument)

x18/s2 (saved)
x19/s3 (saved)
x20/s4 (saved)
x21/s5 (saved)

x22 (saved)
x23 (saved)
x24 (saved)
x25 (saved)
x26 (saved)
x27 (saved)

x28 (temporary)
x29 (temporary)
X30 (temporary)
X31 (temporary)

09/01/2022 Comp 311 - Fall 2022

Basics of Procedure Calling

main: lw a0,x
 lw a1,y
 jal ra,gcd
 sw a0,z

*halt: j halt

x: .word 35
y: .word 55
z: .word 0

14

gcd: beq a0,a1,return
 blt a0,a1,else
 sub a0,a0,a1
 beq x0,x0,gcd
else: sub a1,a1,a0
 beq x0,x0,gcd
return: jalr zero,(ra)

int x = 35;
int y = 55;
int z;

void main() {
 z = gcd(x, y);
}

int gcd(a,b) {
 while (a != b) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 return a;
}

Here the assembly language
version is actually shorter
than the C version.

09/01/2022 Comp 311 - Fall 2022

That was a little too EASY

15

main: lw a0,x
 jal ra,fact
 sw a0,y
*halt: j halt

x: .word 2
y: .word 0

fact: addi t0,x0,1
 bge t0,a0,return
 addi t0,x0,a0
 addi a0,a0,-1
 jal ra,fact
 mul a0,a0,t0
return: jalr x0,ra

int x = 5;
int y;

void main() {
y = fact(x);

}

int fact(x) {
 if (x <= 1)
 return x;
 else
 return x*fact(x-1);
}

This time, things are really messed up.

The recursive call to fact() overwrites
the daved value of x in t0.

To make a bad thing worse,
the ra is also overwritten.

I knew there was a reason
that I avoid recursion.

09/01/2022 Comp 311 - Fall 2022

Next Time

● Stacks
● Contracts
● Writing

serious code

16

