
08/30/2022 Comp 311 - Fall 2022

Addressing Modes and Branches

● More on Immediates
● Reading and Writing Memory
● Registers holding addresses
● Pointers
● Changing the PC

○ Loops
○ Labels
○ Calling Functions

1

08/30/2022 Comp 311 - Fall 2022

Why Built-in Constant operands?
(Immediates)

● Alternatives? Why not? Do we have a choice?
○ put constants in memory (was common in older ISAs)

● SMALL constants are used frequently (50% of operands)
○ In a C compiler (gcc) 52% of ALU operations involve a constant
○ In a circuit simulator (spice) 69% involve constants
○ e.g., B = B + 1; C = W & 0xff; A = B - 1;

● ISA Design Principle:
Make the common case easy
Make the common case fast

2

How large of constants
should we allow for? If
they are too big, we won’t
have enough bits leftover
for the instructions or
operands.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

0
4

1
3

0
2

0
1

1
0

1rdfunc3rs1I-type: imm12

08/30/2022 Comp 311 - Fall 2022

We can load any 32-bit constant using a series of instructions

But there there is a special instruction for constructing large constants.,
called "Load Upper Immediate" or lui. lui uses a new instruction format call
the U-type. lui can be used as part of a two-instruction sequence to
construct any 32-bit constant

Bigger Constants

3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

1
4

1
3

0
2

1
1

1
0

1rdU-type: Imm20

luix10,0x12345 # encoded as 0x12345537

addi x10,x0,0x123
slli x10,x10,12
addi x10,x10,0x456
slli x10,x10,12
addi x10,x10,0x78

Five instructions, is
there a better way?

08/30/2022 Comp 311 - Fall 2022

Load and Store Instructions

RISC-V is a “Load/Store architecture”. That means that only a
specific class of instructions are used to reference data in memory.
As a rule, data is loaded into registers first, then processed, and the
results are written back using stores. Load and Store instructions
have their own format:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

0
4

0
3

0
2

0
1

1
0

1rdfunc3rs1I-type: imm12

000 - LB
001 - LH
010 - LW
100 - LBU
101 - LHU

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

1
4

0
3

0
2

0
1

1
0

1func3rs1S-type: imm7

000 - SB
001 - SH
010 - SW

rs2 imm5

There are five types of loads
from memory. Load a word, a

half-word, or a byte. Bytes and
half-words can be either

signed or unsigned

There are three types of
stores to memory. Store a

word, a half-word, or a byte.
There is no need to distinguish

signed and unsigned.

08/30/2022 Comp 311 - Fall 2022

Load and Store OPtions

lw rd,imm12(rs)

lb rd,-4(rs)

lw rd,(rs)

sw rd,12(rs)

sh rd,(rs)

5

Rd ← Memory[Rs + imm12]
Rd is loaded with the contents of memory at the address found by
adding the contents of the base register, Rs, to the supplied
constant

Rd ← sign_extend(Memory[Rs - 4])
Offsets can be either added or subtracted, as indicated by a negative sign.
The byte is signed-extend to fill the 32 bits of

If no offset is specified it is assumed to be zero

The contents of a register hold the address of the either
the data value or a base address for a composite type
(structure, object, array, or a stack)

RISC-V's load and store instructions are versatile. They provide a
wide range of addressing modes. Only a subset is shown here.

08/30/2022 Comp 311 - Fall 2022

Changing the PC

The Program Counter, or PC, is a special register that
points to the address of the next instruction to be fetched.
There are special instructions for changing the PC. One
type is Branching Instructions. Branches are to nearby
place within +/- 512 instructions away.

6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

1
5

1
4

0
3

0
2

0
1

1
0

1func3rs1B-type: imm7

000 - BEQ
001 - BNE
100 - BLT
101 - BGE
110 - BLTU
111 - BGEU

rs2 imm5

There are six types of branching
instructions. All compare the the
contents of two registers. If the
comparison is true then the next

instruction will be from PC + imm12, if
false PC+4

08/30/2022 Comp 311 - Fall 2022

Branch Examples

bne x10,x0,else

blt x10,x0,neg

loop: beq x0,x0,loop

7

If the contents of x10 is not equal to 0 then branch to the nearby
address with the label "else"

If the contents of x10 is less than 0 then branch to the nearby
address with the label "neg"

An infinite loop.

31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

1
4

0
3

0
2

0
1

1
0

1

beq x0,x0,'s
encoding.

08/30/2022 Comp 311 - Fall 2022

Pc Relative offsets

All branch offsets in RISC-V are added to the PC to
determine the target address of the next instruction in
the case of a valid condition. Earlier ISAs would instead
specify the "absolute" target address. What are the
advantages of "relative" vs "absolute"?

● Does not implicitly limit the address space
● Requires fewer instruction bits, supports the most

common cases
● Allows for "relocatable" code

8

pc →

︙

︙

-4096

4094

08/30/2022 Comp 311 - Fall 2022

A simple Program

Assembly code for
sum = 0;
for (i = 0; i <= 10; i++)
sum = sum + i;
 addi x7,x0,11 # x7 is 10 + 1
 addi x5,x0,0 # x5 is i
 addi x6,x0,0 # x6 is sum
loop: add x6,x6,x5 # sum = sum + i
 addi x5,x5,1 # i++
 blt x5,x7,loop
halt: beq x0,x0,halt

9

08/30/2022 Comp 311 - Fall 2022

Meet the miniRISCV simulator

10

Located at:
https://csbio.unc.edu/mcmillan/miniRISCV.html

Or click the link in the "RESOURCES"
section of the course website

08/30/2022 Comp 311 - Fall 2022

Jumping long distances

There are two more instructions for jumping long
distances. Both are "unconditional", meaning that the branch
is always taken, but they have another interesting feature

11

31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

1
4

0
3

1
2

1
1

1
0

1rdImm20U-type:

JAL: jump and link
Syntax: jal rd,imm20
Description:

Reg[d] ← PC + 4
PC ← PC + sign_extended(imm20)

Write the address of the following instruction, PC + 4, into Reg[d], then
jump to the instruction that is found by adding the current PC to the signed
immediate offset. In practice this is usually specified by a label.

jalr can be used to jump to an absolute location
by first loading the address into a register

08/30/2022 Comp 311 - Fall 2022

Jumping long distances, absolutely

There are two more instructions for jumping long
distances. Both are "unconditional", meaning that the branch
is always taken, but they have another interesting feature

12

31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

1
4

0
3

0
2

1
1

1
0

1rdImm12I-type:

JALR: jump and link register
Syntax: jalr rd,imm12(rs)

 jalr rd,(rs)
Description:

Reg[d] ← PC + 4
PC ← Reg[s] + sign_extended(imm12)

Jump to the instruction given by the contents of Reg[s], and save the
location of the next instruction in Reg[s].

rs

08/30/2022 Comp 311 - Fall 2022

Why store PC + 4?

These long-distance "jump" instructions also save the
address of the following instruction in a register
specified by Rd. Often, this register will be x0, and
therefore is ignored. But in other cases it is useful to get
back to where we jumped from. More about this next
lecture.

13

08/30/2022 Comp 311 - Fall 2022

Next time

We’ll write more Assembly programs

Still some loose ends

● Multiplication? Division? Floating point? Relocatable
data

14

