
08/25/2022 Comp 311 - Fall 2022

Instruction Set Architecture (ISA)

Encoding of instructions raises some interesting choices…
● Trade Offs: performance, compactness, programmability
● Uniformity. Should different instructions

○ Be the same size (number of bits)?
○ Take the same amount of time to execute?
○ Trend: Uniformity. Affords simplicity, speed, pipelining.

● Complexity. How many different instructions? What level
operations?
○ Level of support for particular software operations: array

indexing, procedure calls, “polynomial evaluate”, etc
○ “Reduced Instruction Set Computer”

(RISC) philosophy: simple instructions, optimized for speed
● Mix of Engineering & Art…

1

08/25/2022 Comp 311 - Fall 2022

RISC-V Programming Model
A representative RISC machine

In Comp 311 we’ll use a subset of
the RISC-V core Instruction set
as an example ISA (RV32I).

RISC-V uses BYTE memory
addresses. However, each
instruction is 32-bits wide.. Each
word contains four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

2

Processor State
(inside the CPU)

Main Memory

0123

(4 bytes)

32 bit “words”

031

next instruction

0
4
8
16

20

Addresses
x0 = 0

x1
x2
x3
x4
x5
x6
x7
x8
x9

x29
x30
x31

Fetch/Execute loop:
● fetch Mem[PC]
● execute fetched instruction

(may change PC!)
● PC = PC + 4
● repeat!

⋮

pc

08/25/2022 Comp 311 - Fall 2022

RISC-V Memory Nits

● Memory locations are addressable in different sized chunks
○ 8-bit chunks (bytes)
○ 16-bit chunks (shorts)
○ 32-bit chunks (words)
○ 64-bit chunks

(longs/doubles)
● We also frequently need

access to individual bits!
(Instructions help with this)

● Every BYTE has a unique address
(RISC-V is a byte-addressable machine)

● Most instructions are one word

3

012 3
4567

word
Addr

0:
4:
8:
12:

891011
12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

31 30 29 … … 4 3 2 1 0

08/25/2022 Comp 311 - Fall 2022

Concocting an Instruction Set

4

move flour,bowl
add milk,bowl
add egg,bowl
move bowl,mixer
rotate mixer
...

Nerd Chef
at work.

First Problem Set is Posted

08/25/2022 Comp 311 - Fall 2022

RISC-V Register Nits

● There are 32 named registers [x0, x1, …. x31]
● x0 is special. It always contains "0" and, when

used as a destination, the result is ignored
● The operands of most instructions are registers

● This means to operate on a variables in memory you must:
○ Load the value/values from memory into a register
○ Perform the instruction
○ Store the result back into memory

● Going to and from memory can be expensive
(4x to 20x slower than operating on a register)

● Net effect: Keep variables in registers as much as possible!

● By convention most registers are dedicated to specific tasks

5

A.K.A a
“Load-Store
Architecture”

08/25/2022 Comp 311 - Fall 2022

Basic RISC-V InstructionS

● Instructions include various “fields” that encode combinations of
OPCODES and arguments

● special fields enable extended functions
● several 5-bit OPERAND fields, for specifying the sources and

destination of the operation, usually one of the 32 registers
● Embedded constants (“immediate” values) of various sizes,

The basic data-processing instruction formats:

6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcoderdfunc3rs1rs2func7R-type:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcoderdfunc3rs1imm12I-type:

08/25/2022 Comp 311 - Fall 2022

R-type Data Processing

Instructions that process three-register arguments:

7

000 - ADD/SUB
001 - SLL
010 - SLT
011 - SLTU
100 - XOR
101 - SRL/SRA
110 - OR
111 - AND

addx1,x2,x3

 0x00310b3

Is encoded as:
0000 0000 0011 0001 0000 0000 1011 0011

R-type instructions
have the following template:

OPfunc3 rd,rs1,rs2

Later we’ll
introduce more
R-type variants

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

1
4

1
3

0
2

0
1

1
0

1rdfunc3rs1rs2func7R-type:

ADD - 0000000
SUB - 0100000

 0000000

SRL - 0000000
SRA - 0100000
 0000000

08/25/2022 Comp 311 - Fall 2022

AritHmetic Instructions

add x5,x6,x7

sub x6,x7,x28

mul x28,x5,x6

div x7,x28,x6

rem x6,x28,x6

8

x5 ← x6 + x7
Registers can contain either 32-bit unsigned values
or 32-bit 2’s-complement signed values.
x6 ← x7 - x28
Once more, either 32-bit unsigned values or 32-bit
2’s-complement signed values.
x28 ← x5 * x6
Register contents are treated as signed-values and multiplied together.
The lower 32-bits of the result are saved in the destination.
x7 ← x28 / x6
The first source register is divided by the second. The result is saved
in the destination. A divisor of 0 sets the destination to all '1's
x6 ← x28 % x6
The remainder left after dividing by the first operand by the second
is stored in the destination. A divisor of 0 sets the result to the
dividend.

Recall that the results of arithmetic operations can overflow, or in some
cases aren't even possible, such as dividing by 0. These RISC-V instructions
act exactly like the C-language operators. A user must write code that
detects the overflow condition. Just as they need to do in C.

08/25/2022 Comp 311 - Fall 2022

Logic Instructions

9

0000 0000 0000 0000 1111 1111 0000 0000

0000 0000 0000 0000 1111 0000 1111 0000

x6:

x7:

0000 0000 0000 0000 1111 0000 0000 0000and x5,x6,x7 x5:

0000 0000 0000 0000 1111 1111 1111 0000or x5,x6,x7 x5:

Logical operations on words
operate “bitwise”, that is they
are applied to corresponding
bits of both source operands.

0000 0000 0000 0000 0000 1111 1111 0000xor x5,x6,x7 x5:
Commonly
called
“exclusive-or”

08/25/2022 Comp 311 - Fall 2022

I-type Data Processing

Instructions that process one register and a constant:

10

000 - ADDI
001 - SLLI
010 - SLTI
011 - SLTUI
100 - XORI
101 - SRLI/SRAI
110 - ORI
111 - ANDI

andi x5,x10,255

 0x0ff57293

Is encoded as:
0000 1111 1111 0101 0111 0010 1001 0011

I-type instructions
have the following template:

OPfunc3 rd,rs1,imm12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

0
4

1
3

0
2

0
1

1
0

1rdfunc3rs1I-type: imm12

Notice there is no
SUBI instruction.
Why?

08/25/2022 Comp 311 - Fall 2022

SHifty Shift Immediates

RISC-V provides only 12-bits for specifying an immediate constant
value. The value is consistently treated as a signed 2s-complement
number, thus providing an immediate range of [-2048, 2047]. Shifts,
are an exception to this rule. Shifts (slli, srli, srai) are limited to the
range [0,31], and this limited range is used to encode the difference
between srli and srai.

11

001 - SLLI

101

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

0
5

0
4

1
3

0
2

0
1

1
0

1rdfunc3rs1R-type:

SRLI - 0000000
SRAI - 0100000

shamt

What is the difference
between SRLI and SRAI?
Hint: x = a >>> 16 vs x = a >> 16

func7

Why no SLAI?

srai x6,x5,16

 0x4102d313

Is encoded as:
0100 0001 0000 0010 1101 0011 0001 0011

08/25/2022 Comp 311 - Fall 2022

Left Shifts

Left Shifts effectively multiply the contents of a
register by 2s where s is the shift amount.

slli x10,x10,7 # 0x00751513

12

0000 0000 0000 0000 0000 0000 0000 0111x10 before:

0000 0000 0000 0000 0000 0011 1000 0000x10 after:

= 7

= 7 * 27 = 896

08/25/2022 Comp 311 - Fall 2022

Right Shifts

Right Shifts behave like dividing the contents of a register
by 2s where s is the shift amount, if you assume the
contents of the register are unsigned.

srli x11,x11,2

13

0000 0000 0000 0000 0000 0100 0000 0000x11 before:

0000 0000 0000 0000 0000 0001 0000 0000x11 after:

= 1024

= 1024 / 22 = 256

08/25/2022 Comp 311 - Fall 2022

Arithmetic Right Shifts

Arithmetic right Shifts behave like dividing the contents of
a register by 2s where s is the shift amount, if you
assume the contents of the register are signed.

srai x10,x10,2

14

1111 1111 1111 1111 1111 1100 0000 0000x10 before:

1111 1111 1111 1111 1111 1111 0000 0000x10 after:

= -1024

= -1024 / 22 = -256

08/25/2022 Comp 311 - Fall 2022

Comparison INStructions

● RISC-V has one basic comparison instruction:
Set If Less Than that comes in 4 variations
○ SLT set if less than; R-type
○ SLTU set if less than "unsigned"; R-type
○ SLTI set if less than immediate; I-type
○ SLTUI set if less than "unsigned immediate; I-type

● Sets rd to '1' if the contents of rs1 is less than the contents of
the second operand and to '0' otherwise.

15

31

0
30

0
29

0
28

0
27

0
26

0
25

0
24 23 22 21 20 19 18 17 16 15 14

0
13

1
12 11 10 9 8 7 6

0
5

1
4

1
3

0
2

0
1

1
0

1rdrs1rs2R-type:

0 1 0 0 1 0

0

1

1rdrs1imm12I-type:

0 - signed
1 - unsigned

Don't II
need other
comparisons?

08/25/2022 Comp 311 - Fall 2022

Missing Comparisons

Using SLT and SLU you can create many other
comparisons, such as the examples below:

Comparisons are used to evaluate "conditional expressions"
such as the test of an if statement or a while loop.

16

Comparison Instruction

Set rd if rs < 0 slt rd,rs,x0

Set rd if rs > 0 slt rd,x0,rs

Set rd if rs <> 0 sltu rd,x0,rs

Set rd if rs >= rt slt rd,rt,rs

08/25/2022 Comp 311 - Fall 2022

Next Time

● We will examine more instruction
types and capabilities

○ Branching
○ Jump and Link
○ Loading from and storing

to memory
○ Special instructions

17

