
08/22/2022 Comp 311 - Fall 2022

Behind the Curtain

1. Computer organization
2. Computer Instructions
3. Memory concepts
4. Where should code go?
5. Computers as systems

Problem Set #1 will go
out on Thursday

1

08/22/2022 Comp 311 - Fall 2022

1) Login to your Comp311 account

2) Your username is your UNC ONYEN and
your password is your PID

Login to Course Website

2

08/22/2022 Comp 311 - Fall 2022

Next Steps

3) Once you are logged in, press "Course" and then a “Setup” button
should appear. Press "Setup" and you should see something like:

4) (BTW, you can also change your password here if you want).

3

08/22/2022 Comp 311 - Fall 2022

Catching up From last time…

What decimal value is represented by 0x3f800000, when
interpreted as an IEEE 754 single precision floating point
number?

4

S Exponent Significand

1 8 23

08/22/2022 Comp 311 - Fall 2022

How colors Are Represented

● Each pixel is stored as
three primary parts

● Red, green, and blue
● Usually around 8-bits

per channel
● Pixels can have individual

R,G,B components or
they can be stored indirectly
via a “look-up table”

5

 8-bits 8-bits 8-bits

3 - 8-bit unsigned binary integers (0,255)
-OR-

3 - fixed point 8-bit values (0-1.0)

08/22/2022 Comp 311 - Fall 2022

Color Specifications

Web colors:

Colors are stored as binary too. You’ll commonly see them
in Hex, decimal, and fractional formats.

6

Name Hex Decimal Integer Fractional

Orange #FFA500 (255, 165, 0) (1.0, 0.65, 0.0)

Sky Blue #87CEEB (135, 206, 235) (0.52, 0.80, 0.92)

Thistle #D8BFD8 (216, 191, 216) (0.84, 0.75, 0.84)

08/22/2022 Comp 311 - Fall 2022

Summary

● ALL modern computers represent signed integers
using a two’s-complement representation

● Two’s-complement representations eliminate the need
for separate addition and subtraction units

● Addition is identical using either unsigned and
two’s-complement numbers

● FInite representations of numbers on computers leads
to anomalies

● Floating point numbers have separate fraction and
exponent components.

7

08/22/2022 Comp 311 - Fall 2022

Computer Organization

8

∙ Every computer has at least three basic units
- Input/Output

• where data arrives from the outside world
• where data is sent to the outside world
• where data is archived for the long term (i.e. when the lights go out)

- Memory
• where data is stored (numbers, text, lists, arrays, data structures)

- Central Processing Unit
• where data is manipulated, analyzed, etc.

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Memory

Where bits arrive from
and are sent to

Where bits are processed Where bits are stored

08/22/2022 Comp 311 - Fall 2022

Computer Organization (cont)

∙ Properties of units
- Input/Output

• converts symbols to bits and vice versa
• where the analog “real world” meets the digital “computer world”
• must somehow synchronize to the CPU’s clock

- Memory
• stores bits that represent information
• every unit of memory has an “address” and “contents”,

- Central Processing Unit
• besides processing, it also coordinates data’s movements between units

9

keyboard
hard drive

display

adder
shifter
logic

01001010
10001001
11100000

I/O CPU Memory

08/22/2022 Comp 311 - Fall 2022

What sort of “Processing”

A CPU performs low-level operations called INSTRUCTIONS
Arithmetic
- ADD X to Y then put the result in Z
- SUBTRACT X from Y then put the result back in Y

Logical
- Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)
- Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)
Comparison
- Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0
- Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0

Control
- Skip the next INSTRUCTION if Z is EQUAL to 0

10

08/22/2022 Comp 311 - Fall 2022

Anatomy of an Instruction

Nearly all instructions can be made to fit a common template

OPCODE DESTINATION, OPERAND1, OPERAND2

Issues remaining ...
• Which operations to include?
• Where to get variables and constants?
• Where to store the results?

11

What to do:
add
sub
and
or
beq
bne

Where to put
the result

Who to apply
the operation to…

variables, constants, etc..

CPU

Memory

08/22/2022 Comp 311 - Fall 2022

How is Memory Organized

● By now you know memory is a vast collection of bits
● Groups of bits can represent various types of data

○ Integers, Signed integers. Floating-point values, Strings, Pixels
● How do bits get “Grouped”?
● Memory is organized as a vector of bits with indices

called “addresses”

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 ... A vector
of bits

Bits have
indices called
“addresses”

We can address groups
of bits like a vector. For
example the 8-bits from
[12:20], might be the
number “42”.

[]

08/22/2022 Comp 311 - Fall 2022

Addresses are Key!

The need to “address” bits is one of the most important
factors of a computer’s design.

● How many bits will I ever need?
(remember computer representations are finite)

● The size of scratch variables (registers), is more
determined by the need to address bits than the size of
the data-types needed..

● Should we squander address space by giving “every” bit a
distinct address?

● Perhaps we could address bits in more manageable units

13

08/22/2022 Comp 311 - Fall 2022

Memory COncepts

• Memory is divided into “addressable” units,
each with an address (like an array with
indices)

• Addressable units are usually larger than
a bit, typically 8 (byte), 16 (halfword),
32 (word), or 64 (long) bits

• Each address has variable “contents”
• Memory contents might be:

• Integers in 2’s complement
• Floats in IEEE format
• Strings in ASCII or Unicode
• Data structure de jour
• ADDRESSES
• Nothing distinguishes the difference

14

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 0x00000293

9 0x00a00313

10 0x006282b3

11 0xfff30313

12 0xfe601ce3

13 0x0000006f

14 0x00004020

15 0x20090001

Here we
assume a
32-bit”
“Word”
address-

able
machine

08/22/2022 Comp 311 - Fall 2022

One More Thing

• INSTRUCTIONS for the CPU are
stored in memory along with data

• CPU fetches instructions, decodes
them and then performs their implied
operation

• Mechanism inside the CPU directs which
instruction to get next.

• They appear in memory as a string of
bits that are typically uniform in size

• Their encoding as “bits” is called
“machine language.” ex: 0c3c1d7fff

• We assign “mnemonics” to particular
bit patterns to indicate meanings.

• These mnemonics are called
Assembly language. ex: mv x1, 10

15

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 li x5,0

9 li x6,10

10 add x5,x5,x6

11 addi x6,x6,-1

12 bne x0,x6,.-2

13 j .

14 0x00004020

15 0x20090001

08/22/2022 Comp 311 - Fall 2022

A Bit of History
There is a commonly recurring debate over whether
“data” and “instructions” should be mixed. Leads to two
common flavors of computer architectures

16

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Data
Memory

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Unified
Memory

Program
Mem

“Harvard” Architecture

“Von Neumann” Architecture

08/22/2022 Comp 311 - Fall 2022

Harvard Architecture

Instructions and data do not/should not interact.
They can have different “word sizes” and exist
in different “address spaces”

- Advantages:
• No self-modifying code (a common hacker trick)
• Optimize word-lengths of instructions for control and data for applications
• Higher Throughput (i.e. you can fetch data and instructions from their
memories simultaneously)

- Disadvantages:
• The H/W designer decides the trade-off between how big of a program and
how large are data

• Hard to write “Native” programs that generate new programs
(i.e. assemblers, compilers, etc.)

• Hard to write “Operating Systems” which are programs that at various points
treat other programs as data (i.e. loading them from disk into memory,
swapping out processes that are idle)

17

Howard Aiken:
Architect of the
Harvard Mark 1

08/22/2022 Comp 311 - Fall 2022

Von Neumann Architecture

Instructions are just a type of data that
share a common “word size” and “address
space” with other types.

- Most common model used today, and what we assume in 411
- Advantages:

• S/W designer decides how to allocate memory between data and programs
• Can write programs to create new programs (assemblers and compilers)
• Programs and subroutines can be loaded, relocated, and modified by other
programs (dangerous, but powerful)

- Disadvantages:
• Word size must suit both common data types and instructions
• Slightly lower performance due to memory bottleneck (mediated in modern
computers by the use of separate program and data caches)

• We need to be very careful when treading on memory. Folks have taken
advantage of the program-data unification to introduce viruses.

18

John Von Neumann:
Proponent of unified
memory architecture

08/22/2022 Comp 311 - Fall 2022

INstructions are Simple

● Computers interpret “programs” by translating them from the
high-level language where into “low-level” simple instructions that it
understands

● High-Level Languages
▪ Compilers (C, C++, Fortran)
▪ Interpreters (Basic, Ruby, Lua, Python, Perl, JavaScript)
▪ Hybrids (Java)

● Assembly Language

19

x: .word 0
y: .word 0
c: .word 123456

 lw t0,0(gp) # get x
 addi t0,t0,-3
 lw t1,4(gp) # get y

lw t2,8(gp) # get c
add t1,t1,t2
mul t0,t0,t1
sw t0,0(gp) # save y

int x, y;
y = (x-3)*(y+123456);

08/22/2022 Comp 311 - Fall 2022

INstructions are Binary

● Computers interpret “assembly programs” by translating them
from their mnemonic simple instructions into strings of bits

● Assembly Language
● Machine Language

○ Note the “mostly” one-to-one correspondence
between lines of assembly code and
Lines of machine code

20

0x00000000
0x00000000
0x0001E240

...

0x0001E240
0x0001A283
0xFFD28293
0x0081A383
0x00730333
0x026282B3
0x0051A023

x: .word 0
y: .word 0
c: .word 123456

 lw t0,0(gp) # get x
 addi t0,t0,-3
 lw t1,4(gp) # get y

lw t2,8(gp) # get c
add t1,t1,t2
mul t0,t0,t1
sw t0,0(gp) # save y

08/22/2022 Comp 311 - Fall 2022

A general-Purpose COmputer
The von Neumann Model

Many architectural approaches to the general purpose computer
have been explored. The one upon which nearly all modern computers
is based was proposed by John von Neumann in the late 1940s. Its
major components are:

21

Input/
Output

I/O: Devices for communicating with the outside world.

Central
Processing

Unit

Central Processing Unit (CPU): A device which fetches,
interprets, and executes a specified set of
bits called Instructions.

Main
Memory

Memory: storage of N words of W bits each, where W
is a fixed architectural parameter, and N can
be expanded to meet needs.

My dog knows how to fetch!

He’s said “bit”
before, but not
too much about

“words”

08/22/2022 Comp 311 - Fall 2022

Anatomy of an Instruction

● Computers execute a set of primitive operations called instructions
● Instructions specify an operation and its operands

(arguments of the operation)
● Types of operands: destination, source, and immediate

22

Why do all of the
variables start
with “R”?

CPU’s have a small
number (16-32) of
registers that are
used to hold
variables

add t0,t1,t2

addi t0,t1,1

Operands
(variables, arguments, etc.)

Source Operands
Destination Operand
Immediate Operand

08/22/2022 Comp 311 - Fall 2022

Meaning of an Instruction

● Operations are abbreviated into opcodes (1-4 letters)
● Instructions are specified with a very regular syntax

○ Opcodes are followed by arguments
○ Usually the destination is next, then one or more source

arguments (This is not strictly the case, but it is generally true)
● Why this order?

Analogy to high-level language like Java or C

23

add t0,t1,t2

int r0, r1, r2;
r0 = r1 + r2;

The instruction syntax provides
operands in the same order as
you would expect in a
statement from a high level
language.

Instead of:

r1 + r2 = r0;

08/22/2022 Comp 311 - Fall 2022

A Series of Instructions

● Generally…
○ Instructions are retrieved sequentially from memory
○ An instruction executes to completion before the next

instruction is started
○ But, there are exceptions to these rules

24

t0:0

t1:6

t2:8

t3:10

Variables
add t0, t1, t1

add t0, t0, t0

add t0, t0, t0

sub t1, t0, t1

Instructions

What does this
program do?

X 12X 24X 48

 X 42

08/22/2022 Comp 311 - Fall 2022

Program Analysis

● Repeat the process treating the variables as unknowns or
“formal variables”

● Knowing what the program does allows us to write down its
specification, and give it a meaningful name

● The instruction sequence then becomes a general-purpose tool

25

t0:w

t1:x

t2:y

t3:z

Variables
add t0, t1, t1

add t0, t0, t0

add t0, t0, t0

sub t1, t0, t1

Instructions

What does this
program do?

X 2xX 4xX 8x

X 7x

08/22/2022 Comp 311 - Fall 2022

Looping the Flow

● Repeat the process treating the variables as unknowns or
“formal variables”

● Knowing what the program does allows us to write down its
specification, and give it a meaningful name

● The instruction sequence then becomes a general-purpose tool

26

t0:w

t1:x

t2:y

t3:z

Variables
add t0,t1,t1

add t0,t0,t0

add t0,t0,t0

sub t1,t0,t1

Instructions
X 8x

X 7x

j times7

times7: X 56x

X 49x

X 392x

X 343xAn infinite loop

08/22/2022 Comp 311 - Fall 2022

Open Issues in our Simple Model

● WHERE in memory are INSTRUCTIONS stored?

● HOW are instructions represented?

● WHERE are VARIABLES stored?

● What are LABELs? How do they relate to
where instructions are stored?

● How about more complicated data types?
○ Arrays?
○ Data Structures?
○ Objects?

● Where does a program start executing?

● When does it stop?

27

08/22/2022 Comp 311 - Fall 2022

The Stored-Program Computer

● The von Neumann architecture addresses these issues as follows:
● Instructions and Data are stored in a common memory
● Sequential semantics: To the PROGRAMMER

all instructions appear to execute in an order,
or sequentially

28

Key idea: Memory holds not only
data, but coded instructions
that make up a program.

Central
Processing

Unit

Memory

Instruction

Instruction

Instruction

Instruction

data

data

data
CPU fetches and executes instructions from memory

• The CPU is a H/W interpreter
• Program IS simply DATA for this interpreter
• Main memory: Single expandable resource pool
- constrains both data and program size
- don’t need to make separate decisions of
 how large of a program or data memory to buy

08/22/2022 Comp 311 - Fall 2022

Anatomy of a von Neumann Computer

29

CPU

MEMORY

registers

operations

…
dest

asel

fn

bsel

Cc’sALU

PC 1101000111011

● INSTRUCTIONS coded as binary data
● PROGRAM COUNTER or PC:

Address of next instruction to execute
● logic to translate instructions into

control signals for data path

+1
R1 ←R2+R3

data

Control
Unit

Data
PathsIn

te
rn

al

st
or

ag
e control

status

instructionsaddressaddress

More about
this stuff

later!

08/22/2022 Comp 311 - Fall 2022

Instruction Set Architecture (ISA)

Encoding of instructions raises some interesting choices…
● Trade Offs: performance, compactness, programmability
● Uniformity. Should different instructions

○ Be the same size (number of bits)?
○ Take the same amount of time to execute?
○ Trend: Uniformity. Affords simplicity, speed, pipelining.

● Complexity. How many different instructions? What level
operations?
○ Level of support for particular software operations: array

indexing, procedure calls, “polynomial evaluate”, etc
○ “Reduced Instruction Set Computer”

(RISC) philosophy: simple instructions, optimized for speed
● Mix of Engineering & Art…

30

08/22/2022 Comp 311 - Fall 2022

RISC-V Programming Model
A representative RISC machine

In Comp 311 we’ll use a subset of
the RISC-V core Instruction set
as an example ISA (RV32I).

RISC-V uses BYTE memory
addresses. However, each
instruction is 32-bits wide.. Each
word contains four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

31

Processor State
(inside the CPU)

Main Memory

0123

(4 bytes)

32 bit “words”

031

next instruction

0
4
8
16

20

Addresses
x0 = 0

x1
x2
x3
x4
x5
x6
x7
x8
x9

x29
x30
x31

Fetch/Execute loop:
● fetch Mem[PC]
● execute fetched instruction

(may change PC!)
● PC = PC + 4
● repeat!

⋮

pc

08/22/2022 Comp 311 - Fall 2022

RISC-V Memory Nits

● Memory locations are addressable in different sized chunks
○ 8-bit chunks (bytes)
○ 16-bit chunks (shorts)
○ 32-bit chunks (words)
○ 64-bit chunks

(longs/doubles)
● We also frequently need

access to individual bits!
(Instructions help with this)

● Every BYTE has a unique address
(RISC-V is a byte-addressable machine)

● Most instructions are one word

32

012 3
4567

word
Addr

0:
4:
8:
12:

891011
12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

31 30 29 … … 4 3 2 1 0

08/22/2022 Comp 311 - Fall 2022

Next Time

● We'll examine the RISC-V instruction set
○ Assembly language
○ Machine language

33

