BinARY REPRESENTATIONS

" 2 bits, 4 bits, 6 bits a byte!"

- Representing information as bits
- Number Representations
- Other bits
- A quick review of Comp 211

FIXED-SIZE CODES

If all choices are equally likely (or we have no reason to expect otherwise), then a fixed-size code is often used. Such a code should use at least enough bits to represent the information content.
ex. Decimal digits $10=\{0,1,2,3,4,5,6,7,8,9\}$
BCD
$0-0000$
$1-0001$
$2-0010$
$3-0011$
$4-0100$
$5-0101$
$6-0110$
$7-0111$
$8-1000$
$9-1001$

7-bit ASCII (American Standard Code for information Interchange) $\log _{2}(84 / 1)=6.392<7$ bits

ASCII FOR TEXT

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
000	NUL	SOH	STX	ETX	EOT	ACK	ENQ	BEL	BS	HT	LF	VT	FF	CR	SO	SI
001	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
010		!	"	\#	\$	\%	\&	'	()	*	+	,	-	.	/
011	0	1	2	3	4	5	6	7	8	9	:	;	$<$	=	>	?
100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
101	P	Q	R	S	T	U	V	W	X	Y	Z	[$\$ &] & \wedge	-		
110	-	a	b	c	d	e	f	g	h	i	j	k	I	m	n	0
111	p	q	r	s	t	u	v	w	x	y	z	\{	I	\}	\sim	DEL

- For letters upper and lower case differ in the 6th "shift" bit IOXXXXX is upper, and $\| X X X X X$ is lower
- special "control" characters set upper two bits to 00

$$
\text { ex. cntl-g } \rightarrow \text { bell, cntl-m } \rightarrow \text { carriage return, cntl-[} \rightarrow \text { esc }
$$

- This is why bytes have 8-bits (ASCII + optional parity). Historically, there were computers built with 6-bit bytes, which required a special "shift" character to set case.

UNICODE: A VARIABLE LENGTH TEXT ENCODINGIII

- ASCII is biased towards western languages. English in particular.
- There are, in fact, many more than 256 characters in common use:
- Unicode is a worldwide standard that supports all languages, special characters, classic, extinct, and arcane.
- Several encoding variants 16-bit (UTF-8)
- Variable length (as determined by first byte)

ASCII equiv range: $0|x| x|x| x|x| x \mid x$
Lower 11-bits of 16 -bit Unicode $1110|y| y|y| y|x ~ 10| x|x| x|x| x \mid x$ 16-bit Unicode $1111|0| z|z| z|z \quad 10| z|y| y|y| y|x ~ 10| 0|x| x|x| x \mid x$

encoding positive Integers

It is straightforward to encode positive integers as a sequence of bits. Each bit is assigned a weight. Ordered from right to left, these weights are increasing powers of 2 . The value of an n-bit number encoded in this fashion is given by the following formula:

$$
v=\sum_{i=0}^{n-1} 2^{i} b_{i}
$$

$$
\begin{array}{rrr}
2^{1}= & 2 \\
+\quad 2^{2}= & 4 \\
+2^{5}= & 32 \\
+2^{6}= & 64 \\
+2^{7}= & 128 \\
+2^{8}= & 256 \\
+2^{9}= & 512 \\
+2^{10}= & \frac{1024}{2022}
\end{array}
$$

FAVORITE BITS

- You are going to have to get accustomed to working in binary. specifically for Comp 3II, but it will be helpful throughout your career as a computer scientist.
- Here are some helpful guidelines:

1. Memorize the first 10 powers of 2

$$
\begin{array}{llll}
2^{0}=1 & 2^{1}=2 & 2^{2}=4 & 2^{3}=8 \\
2^{5}=32 & 2^{6}=64 & 2^{7}=128 & 2^{8}=256
\end{array}
$$

2. Memorize the prefixes for powers of 2 that are multiples of 10

$$
\begin{array}{ll}
2^{10}=\text { Kilo }(1024) & 2^{40}=\text { Tera }\left(1024^{4}\right) \\
2^{20}=\text { Mega }\left(1024^{\star 1024)}\right. & 2^{50}=\text { Peta }\left(1024^{5}\right) \\
2^{30}=\text { Giga }\left(1024^{\star} 1024^{\star} 1024\right) & 2^{60}=\text { Exa }\left(1024^{6}\right)
\end{array}
$$

TRICKS WITH BITS

- The first thing that you'll do a lot of is clustering groups of contiguous bits.
- Using the binary powers that are multiples of 10 we can do the most basic clustering.
I. When you convert a binary number to decimal, first break it down from the right into clusters of 10 bits.

2. Then compute the value of the leftmost remaining bits (1)
3. Find the appropriate prefix (GIGA)
4. Often this is sufficient (might need to round up)

01000110000000011000000000101000

A "Giga" something or other

other helpful clusterines

Oftentimes we will find it convenient to cluster groups of bits together for a more compact written representation. Clustering by 3 bits is called Octal, and it is often indicated with a leading zero, 0 . Octal is not that common today.

$$
\begin{aligned}
& v=\sum_{i=0}^{n-1} 8^{i} d_{i} \underbrace{}_{03720} \underbrace{}_{3} \underbrace{2^{11} 2^{12} 2^{2} 2^{8} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{3} 2^{2} 2^{1} 2^{0}}_{7} \underbrace{0|1| 1|1| 0|1| 0|0| 0 \mid 0}_{2} \underbrace{0}_{0} \underbrace{}_{0}=2000_{10} \\
& \text { Octal - base } 8
\end{aligned}
$$

ONE MORE CLUSTERING

Clusters of 4 bits are used most frequently. This representation is called hexadecimal. The hexadecimal digits include O-9, and A-F, and each digit position represents a power of 16 . Commonly indicated with a leading " $O x$ ".

They've always been there...

```
In [1]: \(\quad\) \# Hex expressions
    \(0 \times 29+1\)
    Out[1]: 42
In [2]: \(\mathbf{~ \#}\) another Hex expression
    \(0 \times 15\) * 2
    out[2]: 42
In [4]: \(\quad\) \# Octal expression in Java and \(C\)
            \# you need only a '0' prefix to indicate octal
            0016 * 3
    Out[4]: 42
In [5]: \(\quad\) \# Binary expression
        \# Doesn't work in Java or C
        0b00101100-2
        out[5]: 42
```


SIGNED INTEGERS

- Obvious method is to encode the sign of the integer using one bit.
- Conventionally, the most significant bit is used for the sign.
- This encoding of signed integers is called "SIGNED MAGNITUDE"

$$
\begin{aligned}
& v=-1^{S} \sum_{i=0}^{n-2} 2^{i} b_{i} \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array} \\
& \text { (} 2022
\end{aligned}
$$

- Two ways to represent " O ", +O and -O
- Add/subtract is complicated; depends on the signs
- Not frequently used in practice
- With one important exception that we'll discuss shortly

Z's COMPLEMENT NOTATION

- The 2's complement representation for signed integers is the most commonly used signed-integer representation.
- It is a simple modification of unsigned integers where the most significant bit is a negative power of 2 .

$$
\begin{aligned}
& v=-2^{n-1} b_{n-1}+\sum_{i=0}^{n-2} 2^{i} b_{i} \begin{array}{cc|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
2^{15} 2^{14} & 2^{13} & 2^{12} & 2^{11} & 2^{10} & 2^{9} & 2^{8} & 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array} \\
& \text { - Huh? }
\end{aligned}
$$

- Negative numbers seem hard to "read" (for humans)
- Nonsymmetric range:

For 16 bits the range is $-32768 \leq x \leq 32767$

WHY Z'S COMPLEMENT?

- In the two's complement representation for signed integers, the same binary "addition procedure" (mod 2^{n}) works for adding any combination of positive and negative numbers.
- Don't need a separate "subtraction procedure" (carries only, no borrows)
- The "addition procedure" also handles unsigned numbers!
- In 2's complement adding is "adding"

$$
\begin{aligned}
55_{10} & =000000110111_{2} \\
+10_{10} & =000000001010_{2} \\
\hline 65_{10} & =000001000001_{2}
\end{aligned}
$$ regardless of operand signs.

- You NEVER need to subtract when you use 2 's-complement.
- Just form the 2's -complement of the subtrahend

Ignore this "carry"

$$
\begin{array}{r}
55_{10}=000000110111_{2} \\
+-10_{10}=111111110110_{2} \\
\hline
\end{array}
$$

$$
\overline{45_{10}}=1000000101101_{2}
$$

Comp 311 - Fall 2022

Z'S COMPLEMENT TRICKS

- Negation - changing the sign of a number
I. Invert every bit (i.e. $1 \rightarrow 0, O \rightarrow$ I)

2. Add I

Example: $42_{10}=000000101010_{2}$
$-42_{10}=111111010101_{2}+1=111111010110_{2}$

- Sign-Extension - aligning different sized 2's complement integers - simply copy the sign bit into higher positions

Example: 16 -bit version of 42: $42_{10}=0000000000101010_{2}$ 16 -bit version of $-42:-42_{10}=1111111111010110_{2}$

CLASS EXERCISE

IO's-complement Arithmetic (so you'll never need to borrow again)
Step 1) Write down two 3-digit numbers, where you'll subtract the second from the first

Step 2) Form the 9's-complement of each digit in the second number (the subtrahend)

Step 3) Add 1 to it (the subtrahend)
Step 4) Add this number to the first
Step 5) If your result is less than 1000, form the 9's complement of the sum, add 1 , and remember your result is negative, otherwise subtract 1000

Helpful Table of the 9's complement for

each digit
$0 \rightarrow 9$
$1 \rightarrow 8$
$2 \rightarrow 7$
$3 \rightarrow 6$
$4 \rightarrow 5$
$5 \rightarrow 4$
$6 \rightarrow 3$
$7 \rightarrow 2$
$8 \rightarrow 1$
$9 \rightarrow 0$

What did you get? Why weren't you taught to subtract this way?

FIXED-POINT NUMBERS

- You can always assume that the boundary between 2 bits is a "binary point".
- If you align binary points between addends, there is no effect on how operations are performed.

$$
\begin{aligned}
11111101.0110 & =-2^{7}+2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{\theta}+2^{-2}+2^{-3} \\
& =-128+64+32+16+8+4+1+0.25+0.125 \\
& =-2.625 \\
& \text { OR }
\end{aligned}
$$

$$
\begin{aligned}
11111101.0110 & =-42 \times 2^{-4} \\
& =-42 / 16 \\
& =-2.625
\end{aligned}
$$

Repeated binary fractions

Not all fractions can be represented exactly using a finite representation You've seen this before in decimal notation where the fraction $1 / 3$ (among others) requires an infinite number of digits to represent (0.3333 ...).

In binary, a great many fractions that you've grown attached to require an infinite number of bits to represent exactly.

$$
\text { Example: } \quad \begin{aligned}
1 / 10 & =0.1_{10}=0 . \overline{0011} \ldots_{2}=0.1 \overline{9} \cdots_{16} \\
1 / 5 & =0.2_{10}=0 . \overline{0011} \ldots_{2}=0 . \overline{3} \cdots_{16} \\
1 / 3 & =0.3_{10}=0 . \overline{01} \ldots_{2}=0 . \overline{5} \ldots_{16}
\end{aligned}
$$

FINITE REPRESENTATIONS

- Computers use a finite set of bits (or certain fixed-sized bit clusters) to represent numbers.
- In fact, everything that a realizable computer does is limited by a finite set of bits.
- Through your mastery of mathematics, you've gradually grown used to infinite representations. So much so that finite representations seem odd
- One type of infinity that you've grown used to: Infinite digits
...00000000042.0000000000...
. . .00000000000.0000000000 . . . 001000
10000000...00000000000.0
- The concept an infinite supply of zero digits is conceptually elegant, but difficult to physically implement

SIDE EFFECTS OF BEING FINITE

These examples assume a finite 16 -bit representation

- You can "overflow"

$$
\begin{aligned}
& 32767_{10}+1_{10}=-32768_{10} \quad \begin{array}{r}
0111111111111111_{2} \\
+\frac{0000000000000001_{2}}{100000000000000 \theta_{2}}
\end{array} \\
& -20000_{10}-20000_{19}=25536_{10} \quad 1011000111100000_{2} \\
& +1011000111100000_{2}^{2} \\
& 10110001111000000_{2}^{2}
\end{aligned}
$$

- Certain numbers can't be negated

$$
-32768_{1 \theta}=-32768_{1 \theta}
$$

$$
\begin{array}{r}
1000000000000000_{2} \\
0111111111111111_{2} \\
+\quad 0000000000000001_{2}^{2} \\
\hline 1000000000000000_{2}
\end{array}
$$

bias ndtation

There is yet one more way to represent signed integers, which is surprisingly simple. It involves subtracting a fixed constant from a given unsigned number. This representation is called "Bias Notation".

$$
v=\sum_{i=0}^{n-1} 2^{i} b_{i}-\text { Bias }
$$

Example of Bias 127:
Adding 2 numbers requires a subtraction to fix the result

Why? Monotonicity when viewed as an unsigned number

FLOATING POINT NUMBERS

Another way to represent numbers is to use a notation similar to scientific Notation. This format can be used to represent numbers with fractions $\left(3.90 \times 10^{-4}\right)$, very small numbers $\left(1.60 \times 10^{-19}\right)$, and large numbers $\left(6.02 \times 10^{23}\right)$. This notation uses two fields to represent each number. The first part represents a normalized fraction (called the significand), and the second part represents the exponent (i.e. the position of the "floating" binary point).

Normalized Fraction $\times 2^{\text {Exponent }}$

"dynamic range" "bits of accuracy"

IEEE 754 FORMAT

- single precision format

The exponent is represented in bias 127 notation. Why?

$v=-1^{5} \times 1$. Significand $\times 2^{\text {Exponent-127 }}$

- Example: Normalize:

$$
\begin{aligned}
& 52.25=00110100.01000000_{2} \\
& \quad 001.1010001000000_{2} \times 2^{5} \\
& \begin{array}{c}
(127+5)
\end{array} \\
& 01000010010100010000000000000000 \\
& 01000010010100010000000000000000 \\
& 52.25=0 \times 42510000
\end{aligned}
$$

IEEE 754 LIMITS AND FEATURES

- Single precision limitations
- A little more than 7 decimal digits of precision
- Minimum positive normalized value: $\sim_{1.18} \times 10^{-38}$
- Maximum positive normalized value: $\sim_{3.4 \times 10^{38}}$
- Inaccuracies become evident after multiple single precision operations
- Double precision format

IEEE 754 SPECIAL NUMBERS

- Zero - ± 0

A floating point number is considered zero when its exponent and significand are both zero. This is an exception to our "hidden I" normalization trick. There are also a positive and negative zeros.

s	00000000	00000000000000000000000

- Infinity $- \pm \infty$

A floating point number with a maximum exponent (all ones) is considered infinity which can also be positive or negative.

s	11111111	00000000000000000000000

- Not a Number - NaN for $\pm 0 / \pm 0, \pm \infty / \pm \infty, \log (-42)$, etc.

s	11111111	non-zero

A QUICK WARE-UP EXERCISE

What decimal value is represented by $0 \times 3 f 800000$, when interpreted as an IEEE 754 single precision floating point number?

Bits you can see

The smallest element of a visual display is called a "pixel". Pixels have three independent color components that generate most of the perceivable color range.

- Why three and what are they
- How are they represented in A computer?
- First, let's discuss this notion of perceivable

IT STARTS WITH THE EVE

- The photosensitive part of the eye is called the retina.
- The retina is largely composed of two cell types, called rods and cones.
- Cones are responsible for color perception.
- Cones are most dense within the fovea.

- There are three types of cones, referred to as S, M, and L whose spectral sensitivity varies with wavelength.

1.35 mm from rentina center

8 mm from rentina center

WHY WE SEE IN COLOR

- Pure spectral colors simulate all cones to some extent.
- Mixing multiple colors can stimulate the cones to respond in a way that is indistinguishable from a pure color.
- Perceptually identical sensations are called metamers.
- This allows us to use just three colors to generate all others.

HOW COLORS ARE REPRESENTED

- Each pixel is stored as three primary parts
- Red, green, and blue
- Usually around 8-bits per channel
- Pixels can have individual R,G,B components or they can be stored indirectly via a "look-up table"

3 - fixed point 8-bit values (o-1.0)

COLOR SPECIFICATIONS

Web colors:

Name	Hex	Decimal Integer	Fractional
Orange	\#FFA500	$(255,165,0)$	$(1.0,0.65,0.0)$
Sky Blue	\#87CEEB	$(135,206,235)$	$(0.52,0.80,0.92)$
Thistle	\#D8BFD8	$(216,191,216)$	$(0.84,0.75,0.84)$

Colors are stored as binary too. You'll commonly see them in Hex, decimal, and fractional formats.

SUMMARY

- ALL modern computers represent signed integers using a two's-complement representation
- Two's-complement representations eliminate the need for separate addition and subtraction units
- Addition is identical using either unsigned and two's-complement numbers
- Flnite representations of numbers on computers leads to anomalies
- Floating point numbers have separate fraction and exponent components.

