
08/18/2018 Comp 311 - Fall 2022

Binary Representations

● Representing Information
as bits

● Number Representations
● Other bits
● A quick review of Comp 211

1

“2 bits, 4 bits, 6 bits a byte!”

08/18/2018 Comp 311 - Fall 2022

Fixed-Size Codes

If all choices are equally likely (or we have no reason to expect otherwise),
then a fixed-size code is often used. Such a code should use at least enough
bits to represent the information content.

ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9}
4-bit BCD (binary coded decimal)
log2(10/1) = 3.322 < 4 bits

ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10),
 punctuation (8), math (9),
 financial (5)}

7-bit ASCII (American Standard Code for Information Interchange)
log2(84/1) = 6.392 < 7 bits

2

 BCD
0 - 0000
1 - 0001
2 - 0010
3 - 0011
4 - 0100
5 - 0101
6 - 0110
7 - 0111
8 - 1000
9 - 1001

08/18/2018 Comp 311 - Fall 2022

ASCII for text

● For letters upper and lower case differ in the 6th "shift" bit
 10XXXXX is upper, and 11XXXXX is lower

● Special "control" characters set upper two bits to 00
 ex. cntl-g → bell, cntl-m → carriage return, cntl-[→ esc

● This is why bytes have 8-bits (ASCII + optional parity). Historically, there
were computers built with 6-bit bytes, which required a special "shift"
character to set case.

3

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

000 NUL SOH STX ETX EOT ACK ENQ BEL BS HT LF VT FF CR SO SI

001 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

010 ! " # $ % & ' () * + , - . /

011 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

100 @ A B C D E F G H I J K L M N O

101 P Q R S T U V W X Y Z [\] ^ _

110 ` a b c d e f g h i j k l m n o

111 p q r s t u v w x y z { | } ~ DEL

What's
parity?

08/18/2018 Comp 311 - Fall 2022

Unicode: A variable length text encoding

● ASCII is biased towards western languages. English in particular.
● There are, in fact, many more than 256 characters in common

use:
 â, ö, ß, ñ, è, ¥, £, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క

● Unicode is a worldwide standard that supports all languages,
special characters, classic, extinct, and arcane.

● Several encoding variants 16-bit (UTF-8)
● Variable length (as determined by first byte)

4

08/18/2018 Comp 311 - Fall 2022

Encoding Positive Integers

It is straightforward to encode positive integers as a sequence of bits. Each
bit is assigned a weight. Ordered from right to left, these weights are
increasing powers of 2. The value of an n-bit number encoded in this fashion
is given by the following formula:

5

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

21 = 2
+ 22 = 4
+ 25 = 32
+ 26 = 64
+ 27 = 128
+ 28 = 256
+ 29 = 512
+ 210 = 1024
 2022

0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0

08/18/2018 Comp 311 - Fall 2022

Favorite Bits

● You are going to have to get accustomed to working in binary.
Specifically for Comp 311, but it will be helpful throughout your
career as a computer scientist.

● Here are some helpful guidelines:
1. Memorize the first 10 powers of 2

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16
25 = 32 26 = 64 27 = 128 28 = 256 29 = 512

2. Memorize the prefixes for powers of 2 that are multiples of 10

210 = Kilo (1024) 240 = Tera (10244)
220 = Mega (1024*1024) 250 = Peta (10245)
230 = Giga (1024*1024*1024) 260 = Exa (10246)

6

08/18/2018 Comp 311 - Fall 2022

Tricks with Bits

● The first thing that you'll do a lot of is
clustering groups of contiguous bits.

● Using the binary powers that are multiples of 10 we can do the
most basic clustering.
1. When you convert a binary number to decimal, first break it down
 from the right into clusters of 10 bits.
2. Then compute the value of the leftmost remaining bits (1)
3. Find the appropriate prefix (GIGA)
4. Often this is sufficient (might need to round up)

7

A “Giga” something or other

08/18/2018 Comp 311 - Fall 2022

Other Helpful Clusterings

Oftentimes we will find it convenient to cluster groups of bits
together for a more compact written representation. Clustering by 3
bits is called Octal, and it is often indicated with a leading zero, 0.
Octal is not that common today.

8

08/18/2018 Comp 311 - Fall 2022

One more Clustering

Clusters of 4 bits are used most frequently. This representation is
called hexadecimal. The hexadecimal digits include 0-9, and A-F, and each
digit position represents a power of 16. Commonly indicated with a
leading "0x".

9

08/18/2018 Comp 311 - Fall 2022

They’ve always been there...

10

08/18/2018 Comp 311 - Fall 2022

Signed Integers

● Obvious method is to encode the sign of the integer using one bit.
● Conventionally, the most significant bit is used for the sign.
● This encoding of signed integers is called “SIGNED MAGNITUDE”

11

● The Good
○ Easy to negate, easy to take absolute value

● The Bad
○ Two ways to represent “0”, +0 and -0
○ Add/subtract is complicated; depends on the signs

● Not frequently used in practice
○ With one important exception that we’ll discuss shortly

 S 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0

2022

1

-

08/18/2018 Comp 311 - Fall 2022

2’s Complement Notation

● The 2’s complement representation for signed integers is the
most commonly used signed-integer representation.

● It is a simple modification of unsigned integers where the most
significant bit is a negative power of 2.

12

Still a “sign bit”
(It must be “1” for

the number to < 0)

-32768
+2022

-30746
● Huh?

○ Negative numbers seem hard to “read” (for humans)
○ Nonsymmetric range:

 For 16 bits the range is -32768 ≤ x ≤ 32767

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0

08/18/2018 Comp 311 - Fall 2022

Why 2’s Complement?

● In the two’s complement representation for signed integers, the
same binary “addition procedure” (mod 2n) works for adding any
combination of positive and negative numbers.

● Don’t need a separate “subtraction procedure”
(carries only, no borrows)

● The “addition procedure” also
handles unsigned numbers!

● In 2’s complement adding is "adding"
regardless of operand signs.

● You NEVER need to subtract
when you use 2’s-complement.

● Just form the 2’s -complement
of the subtrahend

13

Ignore this “carry”

 5510 = 0000001101112
+1010 = 0000000010102
 6510 = 0000010000012

 5510 = 0000001101112
+-1010 = 1111111101102
4510 = 10000001011012

08/18/2018 Comp 311 - Fall 2022

2’s Complement Tricks

● Negation – changing the sign of a number
1. Invert every bit (i.e. 1 → 0, 0 → 1)

2. Add 1

Example: 4210 = 0000001010102
 -4210 = 1111110101012 + 1 = 1111110101102

● Sign-Extension - aligning different sized 2’s complement integers
○ Simply copy the sign bit into higher positions

Example: 16-bit version of 42: 4210= 00000000001010102
 16-bit version of -42: -4210= 11111111110101102

14

08/18/2018 Comp 311 - Fall 2022

Class Exercise

10’s-complement Arithmetic (so you’ll never need to borrow again)

Step 1) Write down two 3-digit numbers, where
you’ll subtract the second from the first

Step 2) Form the 9’s-complement of each digit
in the second number (the subtrahend)

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

Step 5) If your result is less than 1000, form the 9’s
complement of the sum, add 1, and remember
your result is negative, otherwise subtract 1000

What did you get? Why weren’t you taught to subtract this way?
15

08/18/2018 Comp 311 - Fall 2022

Fixed-point numbers

● You can always assume that the boundary between 2
bits is a “binary point”.

● If you align binary points between addends, there is no
effect on how operations are performed.

16

1
25

1
24

1
26

1
23

1
22

0
21

1
20

0
2-1

1
2-2

1
2-3

0
2-4

1
-27

11111101.0110 = -27 + 26 + 25 + 24 + 23 + 22 + 20 + 2-2 + 2-3
 = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125
 = -2.625

OR

11111101.0110 = -42 × 2-4
 = -42 / 16
 = -2.625

08/18/2018 Comp 311 - Fall 2022

Repeated Binary Fractions

Not all fractions can be represented exactly using a finite
representation. You’ve seen this before in decimal notation where the
fraction 1/3 (among others) requires an infinite number of digits to
represent (0.3333…).

In binary, a great many fractions that you’ve grown attached to
require an infinite number of bits to represent exactly.

Example: 1/10 = 0.110 = 0.00011...2 = 0.19...16

 1/5 = 0.210 = 0.0011...2 = 0.3...16

 1/3 = 0.310 = 0.01...2 = 0.5...16

17

08/18/2018 Comp 311 - Fall 2022

Finite Representations

● Computers use a finite set of bits (or certain fixed-sized bit
clusters) to represent numbers.

● In fact, everything that a realizable computer does is limited by a
finite set of bits.

● Through your mastery of mathematics, you’ve gradually grown
used to infinite representations. So much so that finite
representations seem odd

● One type of infinity that you’ve grown used to: Infinite digits

● The concept an infinite supply of zero digits is conceptually
elegant, but difficult to physically implement

18

...00000000042.0000000000...

...00000000000.0000000000...001000
10000000...00000000000.0

08/18/2018 Comp 311 - Fall 2022

Side Effects of being Finite

These examples assume a finite 16-bit representation

● You can “overflow”

● Certain numbers can’t be negated

19

3276710 + 110 = -3276810 0111 1111 1111 11112
 + 0000 0000 0000 00012
 1000 0000 0000 00002

-2000010- 2000010= 2553610 1011 0001 1110 00002
 + 1011 0001 1110 00002
 1 0110 0011 1100 00002

-3276810 = -3276810 1000 0000 0000 00002
 0111 1111 1111 11112

+ 0000 0000 0000 00012
 1000 0000 0000 00002

08/18/2018 Comp 311 - Fall 2022

Bias Notation

There is yet one more way to represent signed integers, which is
surprisingly simple. It involves subtracting a fixed constant from a
given unsigned number. This representation is called “Bias Notation”.

Example of Bias 127:

Adding 2 numbers requires a
subtraction to fix the result

Why? Monotonicity when viewed
 as an unsigned number

20

1
27

0
26

0
25

1
24

0
23

1
22

1
21

0
20

 9 x 24 = 144
+ 6 x 20 = 6

 - 127
 23

 150
+ 150

 - 127
173 = 46 + 127

08/18/2018 Comp 311 - Fall 2022

Floating Point Numbers

Another way to represent numbers is to use a notation similar to
Scientific Notation. This format can be used to represent numbers
with fractions (3.90 x 10-4), very small numbers (1.60 x 10-19), and large
numbers (6.02 x 1023). This notation uses two fields to represent each
number. The first part represents a normalized fraction (called the
significand), and the second part represents the exponent (i.e. the
position of the “floating” binary point).

21

08/18/2018 Comp 311 - Fall 2022

IEEE 754 Format

● Single precision format

● Example: 52.25 = 00110100.010000002
Normalize: 001.10100010000002 x 2

5

 0 10000100 10100010000000000000000
 0100 0010 0101 0001 0000 0000 0000 0000
 52.25 = 0x42510000

22

S Exponent Significand

1 8 23
The exponent is

represented in bias
127 notation. Why?

(127+5)

08/18/2018 Comp 311 - Fall 2022

IEEE 754 Limits and Features

● SIngle precision limitations
○ A little more than 7 decimal digits of precision
○ Minimum positive normalized value: ~1.18 x 10-38

○ Maximum positive normalized value: ~3.4 x 1038

● Inaccuracies become evident after multiple single
precision operations

● Double precision format

23

08/18/2018 Comp 311 - Fall 2022

IEEE 754 Special Numbers

● Zero - ±0
A floating point number is considered zero when its exponent and
significand are both zero. This is an exception to our “hidden 1”
normalization trick. There are also a positive and negative zeros.

● Infinity - ±∞
A floating point number with a maximum exponent (all ones) is
considered infinity which can also be positive or negative.

● Not a Number - NaN for ±0/±0, ±∞/±∞, log(-42), etc.

24

S 000 0000 0 000 0000 0000 0000 0000 0000

S 111 1111 1 000 0000 0000 0000 0000 0000

S 111 1111 1 non-zero

08/18/2018 Comp 311 - Fall 2022

A Quick Wake-up exercise

What decimal value is represented by 0x3f800000, when
interpreted as an IEEE 754 single precision floating point
number?

25

08/18/2018 Comp 311 - Fall 2022

Bits You can See

The smallest element of a visual display is called a “pixel”. Pixels have
three independent color components that generate most of the
perceivable color range.

● Why three and what are they
● How are they represented in

A computer?
● First, let’s discuss this notion

of perceivable

26

08/18/2018 Comp 311 - Fall 2022

It starts with the Eye

● The photosensitive part of the eye is called
the retina.

● The retina is largely composed of two
cell types, called rods and cones.

● Cones are responsible for color perception.
● Cones are most dense within the fovea.
● There are three types of cones,

referred to as S, M, and L whose
spectral sensitivity varies with wavelength.

27

08/18/2018 Comp 311 - Fall 2022

Why we see in color

● Pure spectral colors simulate all
cones to some extent.

● Mixing multiple colors can stimulate
the cones to respond in a way that
Is indistinguishable from a pure color.

● Perceptually identical sensations are
called metamers.

● This allows us to use just three colors

to generate all others.

28

08/18/2018 Comp 311 - Fall 2022

How colors Are Represented

● Each pixel is stored as
three primary parts

● Red, green, and blue
● Usually around 8-bits

per channel
● Pixels can have individual

R,G,B components or
they can be stored indirectly
via a “look-up table”

29

 8-bits 8-bits 8-bits

3 - 8-bit unsigned binary integers (0,255)
-OR-

3 - fixed point 8-bit values (0-1.0)

08/18/2018 Comp 311 - Fall 2022

Color Specifications

Web colors:

Colors are stored as binary too. You’ll commonly see them
in Hex, decimal, and fractional formats.

30

Name Hex Decimal Integer Fractional

Orange #FFA500 (255, 165, 0) (1.0, 0.65, 0.0)

Sky Blue #87CEEB (135, 206, 235) (0.52, 0.80, 0.92)

Thistle #D8BFD8 (216, 191, 216) (0.84, 0.75, 0.84)

08/18/2018 Comp 311 - Fall 2022

Summary

● ALL modern computers represent signed integers
using a two’s-complement representation

● Two’s-complement representations eliminate the need
for separate addition and subtraction units

● Addition is identical using either unsigned and
two’s-complement numbers

● FInite representations of numbers on computers leads
to anomalies

● Floating point numbers have separate fraction and
exponent components.

31

