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ABSTRACT

Next generation sequencing techniques have enabled new
methods of DNA and RNA quantification. Many of these
methods require a step of aligning short reads to some ref-
erence genome. If the target organism differs significantly
from this reference, alignment errors can lead to significant
errors in downstream analysis. Various attempts have been
tried to integrate known genetic variants into the reference
genome so as to construct sample-specific genomes to im-
prove read alignments. However, many hurdles in generating
and annotating such genomes remain unsolved.

In this paper, we propose a general framework for mapping
back and forth between genomes. It employs a new format,
MOD, to represent known variants between genomes, and a
set of tools that facilitate genome manipulation and map-
ping. We demonstrate the utility of this framework using
three inbred mouse strains. We built pseudogenomes from
the mm9 mouse reference genome for three highly divergent
mouse strains based on MOD files and used them to map
the gene annotations to these new genomes. We observe
that a large fraction of genes have their positions or ranges
altered. Finally, using RNA-seq and DNA-seq short reads
from these strains, we demonstrate that mapping to the new
genomes yields a better alignment result than mapping to
the standard reference.

The MOD files for the 17 mouse strains sequenced in the
Wellcome Trust Sanger Institute’s Mouse Genomes Project
can be found at
http://www.csbio.unc.edu/CCstatus/index.py ?run=Pseudo
The auxiliary tools (i.e. MODtools and Lapels), written in
Python, are available at http://code.google.com/p/lapels/.
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1. INTRODUCTION

High-throughput sequencing technologies have enabled a
multitude of new quantitative sequence analysis methods,
many of which are based upon an initial alignment to some
reference genome. By quantitative we mean methods where
depth of coverage and the consistency of reads at a given ge-
nomic position factor into some measure of interest. In the
case of RN A-seq analysis, this includes estimation of relative
or absolute transcript abundance |18 [29], assessing parent-
of-origin effects |9} [5], and estimating RN A-editing rates |21}
20]. Whereas ascertaining copy-number and calling genomic
variants are common DNA-seq quantitative analysis exam-
ples.

A common prerequisite of nearly all sequence analysis
pipe-lines is to align read fragments to a high-quality ref-
erence genome sequence. Typically this reference genome is
of a genetically close organism with the same karyotype and
genomic arrangement as the target organism. Moreover, a
large amount of annotation effort has generally been applied
to the reference genome. In particular, the placements and
extents of genes and exons [6], functional elements [27], and
genetic variants [26| [12] are given in coordinates relative to
a reference genome. As the genetic distance between the ref-
erence and target genomes increases the quality of the align-
ment decreases as measured by the numbers of unmapped
and misaligned fragments.

Aligning reads to a reference genome can also introduce
local alignment biases, (i.e., regions that better match the
reference sequence tend toward higher coverage than regions
with variations [3, [19]) which confounds downstream quan-
titative analyses. An obvious alternative is to incorporate
all a priori known variations from the target into a new ref-
erence that is used for alignment. The problem with this
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approach is that it is hard to represent genomic positions
and leverage existing genomic annotations for these syn-
thetic genomes. Positions of the reference will be shifted
due to indels and other structure variations; likewise, newly
inserted sequences might have no corresponding coordinate
in the original reference genome.

Nonetheless, many researchers have addressed this issue
by incorporating variants, to various extents, into a pseudo-
reference genome sequence. Incorporating only single nu-
cleotide polymorphisms (SNPs) is commonplace and straight-
forward [24], since it does not change the coordinates of the
constructed genome sequence. Alternatively, Degner et al.
[3] masked every known polymorphic location in the refer-
ence genome by introducing a third allele, thus increasing
the genetic distance between the target and the reference in
an unbiased fashion. However, these methods only make use
of the SNP data, and they are not applicable to other types
of variants, such as indels. In general, sequence aligners are
less sensitive to the point errors caused by SNPs than to
the frame shifts introduced by indels. Therefore, the impact
of incorporating only SNPs into a new alignment reference
sequence is probably minimal.

There have also been some attempts to utilize other vari-
ants besides SNPs. Rivas-Astroza et al. [22| developed a
software (perEditor) to build a personal genome with dif-
ferent variant types, but they only focussed on genome con-
struction without resolving the coordinate inconsistency af-
ter read alignment. The analysis pipeline for allele-specific
gene expression and binding, proposed by Rozowsky et al.
[23], generated both individual personal diploid genomes and
equivalence maps. However, these maps of equivalent posi-
tions are only employed to map gene annotation between the
reference and individualized genome, while the read align-
ments remain unchanged.

In this paper, we first propose a general-purpose frame-
work for mapping back and forth between genomes, that
is suitable for both short reads and genomic annotations.
It is facilitated by a mapping file, called a MOD file, that
describes all variations between a reference and a target ge-
nomic sequence. MOD files provide a generative mapping
from reference sequence to a target sequence that incorpo-
rates all known structural variants (SNPs, indels, translo-
cations, and inversions). We call these newly generated
genomes, which will be used in place of the standard refer-
ence during the alignment process, pseudogenomes. Map-
ping positions back and forth between the reference and the
pseudogenomes becomes convenient using MOD files, which
can be applied to both gene annotation and remapping of
read-fragment alignments. Not only are the start and end
positions of each fragment remapped (essentially realigned),
but the MOD file provides the information necessary to mod-
ify the associated CIGAR string |16] for each fragment. This
remapping back to the reference coordinates is a crucial step
after alignment to a pseudogenome.

In summary, we propose a mechanism for mapping and
remapping between genomes that is composed of a single
file per target and a set of tools that use and interpret this
file. Using it, we are able to

1. efficiently construct pseudogenomes for use in short-
sequence alignments so as to overcome the problems
associated with reference bias,

2. map positions and intervals between pseudogenomes

and a reference genome, so that we can continue to
utilize annotations rooted in the reference coordinate
system, and

3. manipulate multiple genomes easily, as a result of the
properties of the MOD format.

2. METHODS
2.1 Design of the MOD format

The MOD format is composed of instructions that trans-
form one genome sequence into another. It is essentially an
edit transcript relating two strings |10], and it provides a ba-
sis for quantifying the similarity of two sequences. A MOD
file is not necessarily unique, nor do we make any claims
with regard to minimality. We call the genome before
transformation the source and the one after the destina-
tion. Each MOD file is directional, i.e. always from the
source to the destination.

A MOD file consists of two parts (Fig. [Ih): a header and
a body. The header includes the metadata of the transfor-
mation, such as, the version of the MOD format, the source,
the destination, and so forth. The body holds the instruc-
tions, each of which has its affected position and arguments.
Positions are all stored in the source coordinate system, and
the bases before and after modification are included in the
arguments.

There are three basic types of instructions defined in the
MOD format: s-, d-, and i-instructions. They describe
single-base substitutions, single-base deletions, and inser-
tions, respectively. All instructions are atomic, in that they
reference no more than one position from the source. It is ob-
vious that both s-instructions and d-instructions are atomic.
For i-instructions, we merely add new sequence after an an-
chor position in the source without altering any base; thus
they are also atomic.

One way to generate a MOD file is to convert common
variant calls into instructions. For example, SNPs and ge-
nomic insertions can be directly changed to s-instructions
and i-instructions, respectively. For genomic deletions, we
need to break each of them up into single-base deletions be-
fore converting to d-instructions (Fig. and ) Notice
that the position information in adjacent d-instructions is
redundant. However, the design choice of keeping all in-
structions atomic facilitates later MOD-file manipulations,
whose advantages are considered to outweigh this slight re-
dundancy. Moreover, the additional space overhead is re-
covered when MOD files are compressed.

Complex structure variants, such as tandem duplications,
inversions, and translocations, can be described by the cur-
rent set of instructions. For example, a tandem duplication
is represented by repeating an i-instruction at the same lo-
cation, while inversions (or translocations) are implemented
by a series of d-instructions at the source sequence posi-
tion and a corresponding i-instruction of the inverted (or
transferred) sequence at its new position. We recommend
annotating such coupled sets of instructions using comments
following the instructions.

We can also derive new MOD files from other MOD files
by leveraging various properties of the format. This will be
discussed in Section 2.3].

2.2 Properties of the MOD format



2.2.1 Invertibility

A MOD file specifies all changes from the source genome
to the destination genome; this includes bases both before
and after each change. Therefore, we are able to exchange
the source and the destination by inverting the instructions
in the file (Fig. [2)).

For example, each s-instruction specifies a position and a
nucleotide from the source and its replacement nucleotide
in the destination, so it can be inverted by merely swap-
ping the two nucleotides. The d-instructions contain bases
that they remove from the source, so inverting them will
result in inserting these deleted bases back to the destina-
tion, i.e. i-instructions. Moreover, since d-instructions are
restricted to be one-based but i-instructions are not, adja-
cent i-instructions can be combined into one as an optimiza-
tion. Similarly, i-instructions are broken up into multiple
d-instructions during inversion.

The position of each instruction must also be modified
when inverting a MOD file. Positions in the source coordi-
nate system are changed into destination coordinates in the
output as described in Section [2.3.2].

2.2.2  Concatenability

The MOD files with the same source genome can be con-
catenated. In other words, we can combine a prefix sequence
generated from one MOD file with a suffix sequence from
another MOD file without messing up the coordinates or
missing any variants on the segment boundaries, as long as
the two MOD files have the same source (Fig. [2). Con-
catenation is used to construct pseudogenomes for hybrid
organisms (e.g., F2s and backcrosses) to account for recom-
binations.

Concatenability results from the use of atomic instruc-
tions in a single source coordinate system. Given a genomic
region, every instruction in a MOD file will be either inside
or outside the region; there is no case where an instruction
crosses a region boundary. Therefore, unlike variant calls
that require special care in the boundary cases, MOD files
can be safely cropped.

If the cropped regions from different MOD files are dis-
joint, their instructions can simply be stacked together; oth-
erwise, it is possible that some positions may be affected by
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Figure 1: A MOD file example (a) and the corre-
sponding sequences of the source and the destination
(b). There are two SNPs between these sequences,
and they are represented as two s-instructions at
source positions 2 and 19. A three-base deletion
(from source positions 8 to 10) is observed, and it is
broken up into three d-instructions. The insertion
after position 17 is directly added to the MOD file
without any conversion due to its atomicity.
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Figure 2: The three main properties of the MOD
format enable a wide range of operations on MOD
files. The original MOD file is in the middle, with
A as the source and B as the destination. Inver-
sion only involves one MOD file, and it will ex-
change the source and the destination (top part).
Concatenation and composition, however, need two
or more MOD files. Concatenating two MOD files
with the same source (A in the figure) will generate
a mixed destination (bottom left part). Composing
two MOD files, from A to B and B to C, can be
considered as transferring from A to C through B
(bottom right part).

more than one instruction. When multiple instructions re-
fer to the same genomic coordinate, several rules are used as
the tiebreaker. Generally speaking, if instructions of differ-
ent types are performed on the same location, d-instructions
take precedence over s-instructions. If instructions have the
same type, only the last one will be used. Notice that there
is no preference between i-instructions and other instruction
types, because insertions have no footprint in the source,
and therefore will not contradict other instructions. If two
or more i-instructions specify the same position, they are
added in order.

2.2.3 Composability

Given two MOD files containing instructions to transform
genome A to genome B and genome B to genome C, respec-
tively, one can construct a MOD file transforming genome A
to genome C (Fig. . This property is called composability.

Let P(A — B) and Q(B + C) represent the two MOD
files to be composed, and R(A — C) be the resulting MOD
file. The procedure of composition is briefly described as
follows. First, we invert P to obtain P’, which contains
instructions mapping from genome B to genome A. Second,
we compute the intersection of P’ and Q, i.e., P’NQ. These



shared instructions indicate that A and C' are identical at
the corresponding positions, because same changes should
be made to change B to A and B to C. Third, we remove the
intersection from P’ and Q obtaining P’ and Q separately.
These two MOD files are the actual difference between A
and C. Finally, we map the instruction positions in Q from
genome B coordinates to genome A coordinates (described
in Section , and combine the result with the inversion
of P’. This gives the expected MOD file R.

2.2.4  Other properties

In addition to these three properties, the MOD format has
other virtues. For example, it can be easily converted from
the VCF format |2], which is commonly used to store variant
calls. Also, the MOD files can be compressed by bgzip [16]
and indexed by tabix [15], so that the file sizes are reduced
and they can be efficiently queried.

It is also convenient to edit a MOD file to incorporate
new variants or to mask obsolete ones. Since all positions
are in the same coordinate system for each MOD file, there
is no need to worry about adjusting positions when adding
or removing variants.

2.3 Use of the MOD format

2.3.1 Pseudogenome construction

MOD formatted files provide a generative procedure for
transforming a source sequence to a destination; thus, they
are ideally suited for constructing an in silico target genomic
sequence from a given reference. We call this generated
genome a pseudogenome.

One can easily construct MOD files for entire catalogs
of common inbred strains using readily available variant
calls. The property of concatenability makes it convenient
to create the pseudogenomes for arbitrary crosses between
inbred strains and recombinant inbred lines (RILs)[25]. The

genomes of RILs are a mosaic of two or more founder genomes.

Once the haplotype structure of a RIL is inferred |17} 7],
one can concatenate the regions of instructions from founder
MOD files to form a new MOD file for the RIL, which can
then be utilized for alignments.

When using MOD files we often assume a common source
genome, or reference, but this restriction is unnecessary. The
MOD format can be used to map between any two genomes
or genome versions, allowing the source sequence to be trans-
formed to any destination sequence.

2.3.2  Position mapping

The MOD format also provides the capability to map co-
ordinates or intervals from the source to the destination, and
vice versa. This is done by scanning a MOD file and accumu-
lating the number of shifted bases affected by d-instructions
and i-instructions. For every pair of corresponding regions
in the two genomes, we record a pair of offsets. Given a
position in the source, we first look up in the source offsets
to find out in which region it falls, and then compute its
destination position.

The invertibility of the MOD files guarantees that we are
able to map positions back and forth between the source
and the destination. The composability also extends the
mapping ability. For example, given two MOD files, from
the reference to two non-reference strains, we can invert one
and compose them to get a third. With the help of this

MOD file, we are able to map positions between the two
non-reference strains.

Position mapping can be applied to genome annotations,
which is usually presented in the reference coordinate sys-
tem, to get a new target-specific annotation. Position map-
ping can also be applied to genome alignment results, so we
can remap the alignments from one genome to another as
described in the following pipeline.

2.3.3 The alignment pipeline for inbred strains

Traditionally, DNA-seq or RNA-seq read fragments are
align-ed to a reference genome or transcriptome sequence,
which is subject to a reference bias. Here we propose a new
pipeline for aligning reads to other inbred strains.

Executing the instructions of a MOD file for an inbred
strain, incorporates variants into the reference genome se-
quence to obtain a pseudogenome. Reads can then be mapped
to the pseudogenome using an alignment tool such as Tophat
|28] or Bowtie [14 [13]. The aligned read file (typically
a BAM file) can then be remapped back to the reference
genome’s coordinates for analysis using the same MOD file.
We have developed a tool for this purpose called Lapels,
which remaps the positions of the read fragment alignments,
modifies their associated CIGAR string, and annotates the
observed variants seen in each fragment (Fig. [3) .

The reason for remapping alignments back to reference
coordinates is twofold. First, there are abundant resources
specified in the reference coordinate system, including databases
of genetic variants, gene/exon annotations, and catalogs of
other functional genomic elements. Second, many studies
involve multiple strains. It is convenient to have a common
coordinate system so that comparisons between strains be-
come feasible.

3. RESULTS

In our experiments, we used the mouse as the model or-
ganism, but the MOD format, the tools, and the analysis
pipeline we propose are also applicable to other organisms.

We used three wild-derived inbred mouse strains in our
experiments: CAST/EiJ, PWK/PhJ, and WSB/EiJ, all of
which are highly diverged from the Mus musculus reference
genome derived largely from C57BL/6J. The SNP and indel
variants for these strains were downloaded from the Well-
come Trust Sanger Institute [12], while the mouse reference
genome data is from NCBI MGSCv37.

To generate MOD files for the three target strains, we
first extracted SNPs and indels from the VCF files (down-
loaded from ftp://ftp-mouse.sanger.ac.uk/REL-1105/).
Only
high-confidence SNPs and indels for the 19 autosomes and X
were incorporated into the MOD files. Variants on Y and mi-
tochondria (M) were extracted from other sources (http://
cgd. jax.org/datasets/popgen/diversityarray/yang2009.
shtml). The MOD files used in this paper can be found at
http://www.csbio.unc.edu/CCstatus/index.py?run=Pseudo.
For each MOD file, the statistics for the whole genome are
summarized in Table[d.

The total number of bases involved in all instructions of a
MOD file can be used as an estimation of genomic distance
between a strain and the reference. Fig. [4] shows such dis-
tance for the three strains studied. The CAST strain is the
most distant genetically from the reference and the WSB
strain is the genetically closest to the reference.
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Figure 3: A new alignment pipeline for inbred
strains. The standard reference genome, which
is used directly for alignment in the traditional
pipeline, is replaced by a MOD file generated pseu-
dogenome. The MOD file, which captures variants
between the reference and the inbred strain, is used
twice, once to construct the pseudogenome used for
alignment, and next to map the aligned reads back
to their position in the reference genome where ex-
isting annotations can be leveraged.

To illustrate the density of the genomic variants (cur-
rently described in the MOD files) of the three strains and
their potential impact to read alignment, we divided the
pseudogenome into 100bp windows and counted the num-
ber of bases that are modified by any instruction in each
window. In about 11.72 % of windows three or more bases
are affected by CAST/EiJ variants, while the percentages
are 11.22% and 3.80% for PWK/PhJ and WSB/EiJ, respec-
tively. In general, high-variant windows are uniformly dis-
tributed along the genome, suggesting that, if we use the
reference genome for read alignment, the alignment quality
may be substantially compromised over the entire genome.
We show the distribution of the counts for CAST/EiJ in Fig.

3.1 Position mapping on genetic annotation

In this study, we constructed strain-specific gene annota-
tions for the CAST, PWK and WSB pseudogenomes, and
investigated how many exons, transcripts, and genes were
changed after variants were incorporated in the reference.

The gene annotation of mm9 was from Ensembl |6]. There
are, in total, 688,311 exons, 97,251 transcripts, and 37,620
genes in the latest release (release 67).

To accomplish this, we developed a tool, modmap, for
mapping positions and intervals from source to the desti-
nation. Modmap takes a MOD file and an annotation file as
input. It first builds a position mapping between genomes
internally and then changes the annotation file’s position
columns from source coordinates to destination coordinates.
In our current setting, the source is the reference genome,

Strain  s-instructions d-instructions i-instructions
CAST 17,674,364 4,834,899 4,206,776
PWK 17,202,935 4,715,249 3,457,436
WSB 6,045,875 2,026,461 1,579,714

Table 1: Statistics of MOD files for CAST/EiJ,
PWK/PhJ and WSB/EiJ. The counts are in units
of base-pairs. For s-instructions and d-instructions,
they are just the numbers of instructions, respec-
tively. For i-instructions, the counts are derived
from adding up the number of bases in each inserted
sequence.
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Figure 4: The estimated genetic distances between
the reference and each of the three strains tested.
The first number on edge label is the total num-
ber of MOD file instructions necessary to transform
the reference into the target strain’s pseudogenome.
This number is proportional to the edit distance be-
tween the two genome sequences. The second num-
ber represents a typical percentage of reads from the
target that can be uniquely aligned using the refer-
ence sequence. Notice that these numbers are in-
versely proportional to the strain’s genetic distance
from the reference, and they illustrate the so-called
reference bias. The third number is a typical per-
centage of those reads that uniquely align to a MOD-
file generated pseudogenome.

and the destination is the pseudogenome.

After the strain-specific annotation was obtained, we com-
pared it with the original annotation in terms of the start
positions and the ranges of exons, transcripts, and genes.

Not surprisingly, because of the integrated indels and struc-
ture variants, the start positions of almost all exons, tran-
scripts and genes (over 99%) are shifted in the pseudogenome
annotation. In addition, about 6% of exons, 78% of tran-
scripts and 62% of genes have different lengths (Table
in the CAST pseudogenome. There is a strong correlation
between the number of changes in a strain and the genetic
distance of the strain from the reference. (Fig. |4)

It is worth noting that the pseudogenome annotations
could still be inaccurate. In fact, Gan et al. [8] recently



Strain Exons Transcripts Genes
CAST 5.98% 78.04% 62.37%
PWK 5.87% 76.68% 61.42%
WSB 3.01% 65.76% 52.75%

Table 2: Percentage of exons, transcripts, and genes
that have different lengths in the pseudogenomes.

raised the issue that simply mapping gene annotations back
and forth may lead to incorrect annotations. Nevertheless,
MOD-file derived pseudogenomes can serve as a first-cut
approximations to facilitate initial reannotations while also
supporting efficient remapping back to reference. As a more
accurate picture of the actual genomic structure develops it
can easily be incorporated into the MOD-file.

3.2 RNA-seq read alignment of inbred mice

The mouse samples we sequenced were derived from the
aforementioned wild-derived mouse strains. We sequenced
>1.2G reads on the Illumina HiSeq 2000 platform of mRNA
from the brain tissue extracted from 12 samples (4 samples
per strain) using paired-end reads with 100 bp (2x100). The
number of reads per sample is shown in Table |3|.

For each strain, we applied the pipeline described in Sec-
tion . We used TopHat (v.1.4.0), with default param-
eter settings, to map reads to pseudogenomes derived from
MOD files and the NCBI MGSCv37 Mus musculus reference
genome. After aligning, the read fragments from the result-
ing BAM files were remapped back to the reference genome
and tagged with the number of observed variants (i.e., the
number of variants incorporated in the pseudogenome and
observed in the read). Based on the number of alignments
in the resulting BAM file, we categorized each read into one
of the three classes: unmapping (0), unique mapping (1),
and multiple mapping (>1).

We also aligned the same reads to the standard reference
genome and compared them to the reads mapped to the
pseudogenome. The percentage of reads by category and
the average percentages of biological replicates are shown in
Table[d .

Observe that more reads map uniquely to the pseudogenome

than to the reference (shaded cells). The percentage increase
is 7.46% for CAST, 6.76% for PWK, and 2.38% for WSB.

On one hand, the percentage of reads that uniquely map
to the reference increases as we move from CAST (59.35%)
to PWK (60.43%) to WSB (65.02%). This again accurately
reflects the genetic distance of each strain from the reference
(Fig. [4)) . The more different that a strain is from the
reference, the fewer of its reads are mapped to reference
genome, thus illustrating a reference bias.

In contrast, the percentage of reads that uniquely mapped
to the pseudogenome is consistent among the three strains
(around 67%). Thus, with pseudogenomes, the different
strains are brought to comparable levels of mappability,
which implies that the reference bias has been largely dimin-
ished. In all samples around 30% of reads remain unmapped,
we believe this residual represents current limitations of the
aligner in combination with the remaining inaccuracies in
the pseudogenome sequence.

Notice that the largest percentage increase is due to reads
that are mapped uniquely to the pseudognome but unmapped
to the reference (cells with pink shading). This suggests that

our pipeline has rescued many reads that are discarded in
the traditional method, especially when the strain is distant
from the reference.

In order to understand how the embedded variants af-
fect the alignment result, we investigate what percentage of
reads have observed variants in the each categories. The re-
sult is shown in Table [5] . Notice that categories involving
unmapped reads in pseudogenomes are not included in the
table, because such reads have no alignment and, thus, no
observed variants of the strains.

Most of the reads that were mapped uniquely to the pseu-
dogenome but unmapped in the reference alignments have
variants: 88.74% for CAST, 88.08% for PWK, and 84.25%
for WSB. Similarly, around 78% of the reads that were un-
mapped in the reference alignment, but mapped to multiple
positions in the pseudogenome, contained a strain-specific
variant. Such unmapped-to-multi-mapped reads, however,
account, for less than 0.01% of all aligned reads. Another
group (0.05-0.1%) of the reads mapped to multiple posi-
tions in the reference alignment became unique mapping in
the pseudogenome alignment owing to the added variants.
In short, by incorporating the variants in the reference, we
have provided the reads a better genome sequence to map
to; such reads are neither thrown away nor misplaced by the
aligner in the new pipeline.

Of those reads that mapped uniquely in both the refer-
ence and pseudogenomes, only a small fraction of them con-
tain the strain-specific variants. This is to be expected since
there are plenty of conserved regions in the genome. If reads
originate from one of these regions, it is possible that they
will be mapped uniquely to both genomes without any ob-
served variant. Moreover, both alignments of this kind of
reads should have the same mapping position, because we
remapped the pseudogenome-aligned reads back to the ref-
erence coordinate system. In order to verify our hypothesis,
we looked further into this category of reads by comparing
the two alignments in terms of their positions and CIGAR
strings. As shown in Table |§|, over 99% of reads in this cat-
egory have the same mapping position and CIGAR string
in both alignments, which justifies our previous assumption.
We also observed that a large portion of remaining reads
contain variants, the percentage of which is shown in paren-
thesis. Lastly, we find that for such reads fewer mismatches
are seen in the pseudognome alignments than in the ref-
erence alignments, suggesting a better alignment result is
achieved by using the pseudogenome.

3.3 DNA-seq read alignment of inbred mice

Our alignment pipeline using pseudogenomes can also be
used to align DNA-seq short reads. In this experiment,
the DNA-seq data set was provided by the Wellcome Trust
Sanger Institute (ftp://ftp-mouse.sanger.ac.uk/current _
bams/), in which mouse strains were sequenced with Illumina
HiSeq platform with over 40-fold coverage. Reads are 100bp
paired-end.

We extracted the raw reads from the BAM file of CAST /EiJ
and obtained 646,514,920 reads in total. Then we realigned
them to both the standard reference genome and the CAST
pseudogenome using Bowtie (v.2.0.5). Default parameter
settings were used, and only the best alignment for each
read was reported. The comparison of read alignments to
the pseudogenome and the reference genome is shown in Ta-
ble[D.
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Table 3: Number of reads for 12 samples in 3 strains.

Strain Sample 1 Sample 2 Sample 3 Sample 4 Total
CAST 88,520,554 78,903,440 78,976,480 135,080,364 381,480,838
PWK 140,642,004 96,388,598 96,735,248 132,859,376 466,625,226
WSB 130,888,744 123,814,138 66,178,922 92,044,920 412,926,724

Table 4: Average percentage of RNA-seq reads from CAST, PWK, and WSB samples mapped to the pseu-

dogenome and the reference.

Al Reference
ignment

Unique Multiple Unmapped Total
Unique 58.91% 0.10% 7.80% 66.81%
Multiple 0.11% 2.31% 0.01% 2.43%
CAST Pseudogenome Unmapped 0.33% 0.01% 30.42% 30.76%
Total 59.35% 2.42% 38.23% 100.00%
Unique 60.01% 0.09% 7.09% 67.19%
Multiple 0.14% 2.37% 0.01% 2.52%
PWK Pseudogenome Unmapped 0.28% 0.01% 30.00% 30.29%
Total 60.43% 2.47% 37.10% 100.00%
Unique 64.83% 0.04% 2.53% 67.40%
Multiple 0.06% 2.47% < 0.01% 2.54%
WSB Pseudogenome Unmapped 0.13% < 0.01% 29.93% 30.06%
Total 65.02% 2.52% 32.46% 100.00%

Table 5: Average percentage of RN A-seq reads with observed variants from CAST, PWK, and WSB samples

in each category.

. Reference
Alignment

Unique Multiple Unmapped Total

Unique 21.50% 64.59% 88.74% 29.58%

CAST Pseudogenome Multiple 74.99% 2.74% 78.80% 6.10%
Unique 21.68% 61.38% 88.08% 28.85%

PWK Pseudogenome Multiple 76.46% 4.01% 77.48% 8.22%
Unique 7.79% 56.51% 84.25% 10.71%

WSB Pseudogenome Multiple 75.96% 2.42% 78.37% 4.40%

Table 6: Comparison of mapping positions and CIGAR strings for reads uniquely mapped to both genomes.

Pseudogenome Strain ~ Unequal Start

Equal Start but Unequal CIGAR Equal Start and CIGAR

CAST 0.32% (82.43%)
PWK 0.32% (79.78%)
WSB 0.12% (79.03%)

0.41% (97.70%)
0.39% (97.41%)
0.20% (97.62%)

99.26% (20.98%)
99.29% (21.20%)
99.68% (7.53%)

Most reads (over 95%) aligned to both genomes, which
suggests that the aligner, in general, compensates for differ-
ences in genomic sequences. However, the pseudogenome,
recovers about 0.70% more reads. Notice that this num-
ber is much smaller than the recovery rate of the RNA-seq
experiments described in Section (i-e., 7.48%). We spec-
ulate that the reason for this is two-fold. First, without
splice junctions, DNA-seq reads are intrinsically easier to
align than RNA-seq reads. The 100bp DNA-seq reads have
a higher mappability than the short fragments that are sep-
arated by exon junctions as in RNA-seq reads. Second, the
tolerance of mismatches and gaps is different between Bowtie
and Tophat. With default settings, as used in our experi-
ments, Bowtie allows more mismatches than Tophat.

We further investigated the 95% of reads by grouping
them based on alignment positions and edit distances. For
each read, we compared the alignments to the pseudogenome
with those to the reference genome. Alignments were con-
sidered to occupy the same position only if their starting
positions and CIGAR strings were identical. The edit dis-
tance is represented by the NM tag of each alignment. The
results are shown in Table. On one hand, 91% of the reads
aligned to exactly the same position. While over 54% of the
reads have no mismatches or an equal edit distance in the
two alignments, about 36% of the reads aligned to the refer-
ence genome have a larger edit distance than the same read’s
alignment to the pseudogenome. It is worth mentioning that
this percentage may vary for different aligner parameter set-



tings and may also be influenced by noise. On the other
hand, around 4.7% of the reads have different alignment lo-
cations. Since we have incorporated known variants into the
pseudogenome, it is expected that the alignment positions
in the pseudogenome are more accurate than those in the
standard reference.

Although our pipeline does not directly rescue as many
reads in the DNA-seq data as it did in RNA-seq data, it
greatly increases the robustness and accuracy of the align-
ment results.

4. DISCUSSION

In this paper, we propose an approach for representing
the mappings and variations between genomes as a gen-
erative procedure, which we call a MOD file. MOD files
can be used to directly transform a reference genome into
any other target sequence. We have also developed a set of
auxiliary tools (http://code.google.com/p/lapels/) that use
MOD files to perform a wide range of useful genomic trans-
formations. Moreover, we integrate the MOD files into the
traditional Hi-seq alignment pipelines to improve mapping
quality and reduce the biases inherent in any reference based
approach.

We should point out that despite its incorporated vari-
ants, a pseudogenome may still differ significantly from the
actual one, because to some extent we are limited by our
current knowledge of the genomic variation. It can be pre-
dicted that as we gain more understanding of the variants
between strains, the pseudogenomes will become more ac-
curate and useful. However, results from the experiments
suggest that incorporating known variants into a reference
sequence used for alignment has considerable benefits, and
always outperforms a standard reference. The primary im-
pediment of incorporating variants into a genome has been
the difficulty in relating the result to various annotations
defined for the reference. This is precisely utility of MOD
files; they provide a simple means of mapping to and from
a related pair of sequences.

Several existing databases and file formats have similari-
ties to our proposed MOD file description. The VCF format,
for example, is widely used to annotate variant information.
The main difference between the MOD file and the VCF
format is the content: a MOD file describes a mapping to
transform genomes, while a VCF file catalogs only sequence
variants. Also, the VCF format supports variant calls for
multiple sequences in a single file, whereas the MOD format
relates only two sequences, i.e., the source and the destina-
tion. Furthermore, other information of variants, such as
genotype quality, allele frequency, and read depth, can be
placed in the VCF files; whereas MOD files contain only
the necessary metadata and instructions for transforming
one genome sequence to another. The UCSC Chain format
and LiftOver tool [1] are widely used to convert genome co-
ordinates between assemblies, while the delta file from the
MUMmer package [4] is designed to contain encoded rep-
resentation of coordinate and distance for pair-wise align-
ments. However, both formats are just a subset of the MOD
format, which not only provides the functionality of position
mapping, but also includes both original and new genomic
subsequences. In fact, we can derive and store the internal
position mapping of a MOD file into the Chain format or the
delta format. To sum up, the MOD format we propose does
not replace any existing formats; it should be considered as

a novel format that brings the convenience of a single file
to describe sequence transformations and mappings, thus
aiding high-throughput sequence alignment pipelines.

Our MOD format is also applicable to non-inbred, diploid,
strains. In an inbred strain, the two diploid genomes are
identical, thus requiring only one MOD file to relate its
genome sequence to the reference. For an outbred sample,
we use two MOD files, one for each haplotype sequence.
From these MOD files we construct two genomes and per-
form separate alignments to each one, and remap both align-
ments back to reference coordinates using Lapels as shown
in Fig. [3]. We are then able to ascertain the originating
sequence for reads where possible as determined by infor-
mative differences between the diploid sequences. We have
demonstrated this capability on F1 hybrids between two in-
bred strains |11].

Furthermore, we can employ the MOD files in DNA-seq
alignment pipelines to increase mapping quality. To do that,
we first use the traditional alignment procedure to map
the DNA-seq reads against the reference and called variants
based on the read alignments. Then we convert the variant
calls into the MOD format, and construct a pseudogenome,
to which we re-align the original set of DNA-seq reads it-
eratively. Subsequent alignments will go on to contribute
new variant calls, as the procedure repeats. This gradually
results in a more accurate pseudogenome.
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Figure 5: The bar chart of high-variant intervals of
CAST pseudogenome. Each bar represents the per-
centage of 100bp windows within a 500Kb region
that contain 3 or more sequence variations relative
to the reference strain. Such regions present prob-
lems for most sequence aligners.
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